• Title/Summary/Keyword: Feedback reduction

Search Result 279, Processing Time 0.028 seconds

Stuttering Reduction Rate during Sentence Reading: Choral Speech and Altered Auditory Feedback (문장읽기에서의 말더듬 감소율: 합독과 변조청각피드백)

  • Park, Jin;Park, Heeyoung
    • Phonetics and Speech Sciences
    • /
    • v.4 no.4
    • /
    • pp.109-115
    • /
    • 2012
  • This paper mainly aims to investigate how differently choral speech and altered auditory feedback (i.e., delayed auditory feedback, frequency-altered feedback) enhance speech fluency during sentence reading. To do this, a stuttering reduction rate was used and measured how much stuttering in frequency was reduced during each of the fluency enhancing conditions (i.e, typical choral reading, DAF, FAF) relative to typical solo reading. The results showed that stuttering frequency was reduced in the three fluency enhancing conditions and the highest mean value in stuttering reduction rate was observed during typical choral reading. Some discussion was provided in relation to the stuttering reduction rate observed during typical choral reading and its further speculation.

Feedback Reduction Scheme of SDMA with Quantized CSI using User Restriction (사용자 제한을 이용한 양자화된 채널 상태 정보를 갖는 공간 분할 다중 접속 방식의 되먹임 감소 기법)

  • Seo, Woo-Hyun;Park, Sung-Soo;Min, Hyun-Kee;Hong, Dea-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.25-33
    • /
    • 2010
  • Introducing the quantized channel state information (CSI), space division multiple access (SDMA) can extract the multiplexing gain with the limited feedback burden. However, huge signaling burden of feedback can still suffer SDMA system because the total feedback data of SDMA is linearly dependent on the number of users. Hence, we propose a new feedback scheme to control the feedback load decided by the number of users. In this scheme, the cut-off level, which restricts the feedbacks of poor conditioned users, is suggested for the reduction of the feedback burden without the performance loss. From simulation results, then, we show that the proposed feedback scheme can achieve not only the sum-rate gain but also the reasonable feedback reduction.

Scheduling and Feedback Reduction in Coordinated Networks

  • Bang, Hans Jorgen;Orten, Pal
    • Journal of Communications and Networks
    • /
    • v.13 no.4
    • /
    • pp.339-344
    • /
    • 2011
  • Base station coordination has received much attention as a means to reduce the inter-cell interference in cellular networks. However, this interference reducing ability comes at the expense of increased feedback, backhaul load and computational complexity. The degree of coordination is therefore limited in practice. In this paper, we explore the trade-off between capacity and feedback load in a cellular network with coordination clusters. Our main interest lies in a scenario with multiple fading users in each cell. The results indicate that a large fraction of the total gain can be achieved by a significant reduction in feedback. We also find an approximate expression for the distribution of the instantaneous signal to interference-plus-noise ratio (SINR) and propose a new effective scheduling algorithm.

Feedback Control of a Circular Cylinder Wake with Rotational Oscillation (주기적 회전을 이용한 원봉 후류의 되먹임 제어)

  • Baek, Seung-Jin;Seong, Hyeong-Jin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.9
    • /
    • pp.1234-1240
    • /
    • 2002
  • A new feedback control law is proposed and tested for suppressing the vortex shedding from a circular cylinder in a uniform flow. The lift coefficient ( $C_{L}$) is employed as a feedback control signal and the control forcing is given by a rotational oscillation of the cylinder. The influence of the feedback transfer function on the $C_{L}$ reduction is examined. The main rationale of the feedback control is that a feedback control forcing is imposed at a phase which is located outside the range of lock-on. By applying the feedback control law, $C_{L}$ is reduced significantly. Furthermore, the reduction mechanism of $C_{L}$ is analyzed by showing the vortex formation modes with respect to the forcing phase.e.ase.e.

Memory Reduction Method of Radix-22 MDF IFFT for OFDM Communication Systems (OFDM 통신시스템을 위한 radix-22 MDF IFFT의 메모리 감소 기법)

  • Cho, Kyung-Ju
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.13 no.1
    • /
    • pp.42-47
    • /
    • 2020
  • In OFDM-based very high-speed communication systems, FFT/IFFT processor should have several properties of low-area and low-power consumption as well as high throughput and low processing latency. Thus, radix-2k MDF (multipath delay feedback) architectures by adopting pipeline and parallel processing are suitable. In MDF architecture, the feedback memory which increases in proportion to the input signal word-length has a large area and power consumption. This paper presents a feedback memory size reduction method of radix-22 MDF IFFT processor for OFDM applications. The proposed method focuses on reducing the feedback memory size in the first two stages of MDF architectures since the first two stages occupy about 75% of the total feedback memory. In OFDM transmissions, IFFT input signals are composed of modulated data and pilot, null signals. In order to reduce the IFFT input word-length, the integer mapping which generates mapped data composed of two signed integer corresponding to modulated data and pilot/null signals is proposed. By simulation, it is shown that the proposed method has achieved a feedback memory reduction up to 39% compared to conventional approach.

Distributed Compressive Sensing Based Channel Feedback Scheme for Massive Antenna Arrays with Spatial Correlation

  • Gao, Huanqin;Song, Rongfang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.108-122
    • /
    • 2014
  • Massive antenna array is an attractive candidate technique for future broadband wireless communications to acquire high spectrum and energy efficiency. However, such benefits can be realized only when proper channel information is available at the transmitter. Since the amount of the channel information required by the transmitter is large for massive antennas, the feedback is burdensome in practice, especially for frequency division duplex (FDD) systems, and needs normally to be reduced. In this paper a novel channel feedback reduction scheme based on the theory of distributed compressive sensing (DCS) is proposed to apply to massive antenna arrays with spatial correlation, which brings substantially reduced feedback load. Simulation results prove that the novel scheme is better than the channel feedback technique based on traditional compressive sensing (CS) in the aspects of mean square error (MSE), cumulative distributed function (CDF) performance and feedback resources saving.

Multichannel Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 다채널 능동제어)

  • Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1252-1261
    • /
    • 2006
  • This paper summarizes theoretical work on the multichannel decentralized feedback control of sound radiation from aircraft trim panels using piezoceramic actuators. The aircraft trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. It is motivated by the localization of reduction in vibration of single channel active trim panels. 12-channel decentralized feedback control systems are investigated in terms of the reduction of noise and vibration for three configurations of sensor actuator pairs. Local coupling of the closely-spaced sensor and actuator pairs was modeled using single degree of freedom systems. The multichannel control system is characterized using the state-space model. For the stability point of view, the relative stability or robustness is evaluated by comparing the real part of eigenvalues of the system matrix for the three configurations. The control performance is also evaluated and compared for the three configurations. It is found that the multichannel system can lead to the globalization of the reduction in vibration and radiated noise. It does not appear to yield a significant improvement in the vibration because of decreased gain margin. However, the reduction in the radiated noise is remarkably improved due to the variation of the vibration pattern with the actuation configurations.

Literature review of technologies and energy feedback measures impacting on the reduction of building energy consumption (건물에너지 사용 저감을 위한 에너지 피드백에 관한 기초연구)

  • Lee, Eun-Ju;Pae, Min-Ho;Jang, Ji-Hyeon;Kim, Dong-Ho;Kim, Jae-Min;Kim, Jong-Yeob
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.813-818
    • /
    • 2008
  • In order to reduce energy consumption, this study presents a way to energy reduction through energy-feedback which enables a household to self-recognize the need for energy reduction and respond to. The effect of this energy-feedback has been reported as $10{\sim}15%$ in average, and been actively investigated in abroad from 1970's while study in korea has been in its first step. In this study, examination on the cases of abroad study is made as it shows the effectiveness and applicability of energy feedback. And paradigms to consider for application to korea will be suggested anticipating the change of actions through energy feedback.

  • PDF

Vibration Suppression Control for Mechanical Transfer Systems by Jerk Reduction

  • Hoshijima, Kohta;Ikeda, Masao
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.6
    • /
    • pp.614-620
    • /
    • 2007
  • This paper considers vibration suppression of a mechanical transfer system, where the work is connected with the hand flexibly. We adopt the idea of jerk reduction of the hand. From the equation of motion, we first derive a state equation including the jerk and acceleration of the hand, but excluding the displacement and velocity of the work. Then, we design optimal state feedback for a suitable cost function, and show by simulation that jerk reduction of the hand is effective for vibration suppression of the work and improvement of the settling time. Since state feedback including the jerk and acceleration is not practical, we propose a computation method for optimal feedback using displacements and velocities in the state only.

Feedback Controller Design for a In-plane Gimbaled Micro Gyroscope Using H-infinity and State Weighted Model Reduction Techniques

  • Song, Jin-Woo;Lee, Jang-Gyu;Taesam Kang;Kim, Yong-Kweon;Hakyoung Chung;Chang, Hyun-Kee
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.39.3-39
    • /
    • 2002
  • In this paper, presented is a feedback control loop, for an in-plane gimbaled micro gyroscope based on methodology and state weighted model reduction technique. The micro gyroscope is the basic inertial sensors. To improve the performances such as stability, wide dynamic range, bandwidth and especially robustness, it is necessary to design a feedback control loop, which must be robust, because the manufacturing process errors can be large. Especially, to obtain wide bandwidth, the feedback controller is indispensable, because the gyroscope is high Q factor system and has small open loop bandwidth. Moreover, the feedback controller reduces the effect...

  • PDF