• Title/Summary/Keyword: Feedforward topology

Search Result 8, Processing Time 0.023 seconds

A 67dB DR, 1.2-V, $0.18-{\mu}m$ Sigma-Delta Modulator for WCDMA Application (WCDMA용 67-dB DR, 1.2-V, $0.18-{\mu}m$ 시그마-델타 모듈레이터 설계)

  • Kim, Hyun-Jong;Yoo, Chang-Sik
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.6 s.360
    • /
    • pp.50-59
    • /
    • 2007
  • [ $0.18-{\mu}m$ ] CMOS 1.2-V 2nd-order ${\Sigma}{\Delta}$ modulator with full-feedforward topology is designed. Using full-feedforward topology makes op-amp performance requirements much less stringent, therefore it has been adopted as a good candidate for low-voltage low-power applications throughout the world. Also, ${\Sigma}{\Delta}$ modulator is designed with top-down design approach, therefore various nonideal effects of op-amp are modeled in this paper.

A Low-Voltage Low-Power Delta-Sigma Modulator for Cardiac Pacemaker Applications (심장박동 조절장치를 위한 저전압 저전력 델타 시그마 모듈레이터)

  • Chae, Young-Cheol;Lee, Jeong-Whan;Lee, In-Hee;Han, Gun-Hee
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.46 no.1
    • /
    • pp.52-58
    • /
    • 2009
  • A low voltage, low power delta-sigma modulator is proposed for cardiac pacemaker applications. A cascade of delta-sigma modulator stages that employ a feedforward topology has been used to implement a high-resolution oversampling ADC under the low supply. An inverter-based switched-capacitor circuit technique is used for low-voltage operation and ultra-low power consumption. An experimental prototype of the proposed circuit has been implemented in a $0.35-{\mu}m$ CMOS process, and it achieves 61-dB SNDR, 63-dB SNR, and 65-dB DR for a 120-Hz signal bandwidth at 7.6-kHz sampling frequency. The power consumption is only 280 nW at 1-V power supply.

Analysis and Design of High Efficiency Feedforward Amplifier Using Distributed Element Negative Group Delay Circuit (분산 소자 형태의 마이너스 군지연 회로를 이용한 고효율 피드포워드 증폭기의 분석 및 설계)

  • Choi, Heung-Jae;Kim, Young-Gyu;Shim, Sung-Un;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.681-689
    • /
    • 2010
  • We will demonstrate a novel topology for the feedforward amplifier. This amplifier does not use a delay element thus providing an efficiency enhancement and a size reduction by employing a distributed element negative group delay circuit. The insertion loss of the delay element in the conventional feedforward amplifier seriously degrades the efficiency. Usually, a high power co-axial cable or a delay line filter is utilized for a low loss, but the insertion loss, cost and size of the delay element still acts as a bottleneck. The proposed negative group delay circuit removes the necessity of the delay element required for a broadband signal suppression loop. With the fabricated 2-stage distributed element negative group delay circuit with -9 ns of total group delay, a 0.2 dB of insertion loss, and a 30 MHz of bandwidth for a wideband code division multiple access downlink band, the feedforward amplifier with the proposed topology experimentally achieved a 19.4 % power added efficiency and a -53.2 dBc adjacent channel leakage ratio with a 44 dBm average output power.

Evolutionary Learning of Sigma-Pi Neural Trees and Its Application to classification and Prediction (시그마파이 신경 트리의 진화적 학습 및 이의 분류 예측에의 응용)

  • 장병탁
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.13-21
    • /
    • 1996
  • The necessity and usefulness of higher-order neural networks have been well-known since early days of neurocomputing. However the explosive number of terms has hampered the design and training of such networks. In this paper we present an evolutionary learning method for efficiently constructing problem-specific higher-order neural models. The crux of the method is the neural tree representation employing both sigma and pi units, in combination with the use of an MDL-based fitness function for learning minimal models. We provide experimental results in classification and prediction problems which demonstrate the effectiveness of the method. I. Introduction topology employs one hidden layer with full connectivity between neighboring layers. This structure has One of the most popular neural network models been very successful for many applications. However, used for supervised learning applications has been the they have some weaknesses. For instance, the fully mutilayer feedforward network. A commonly adopted connected structure is not necessarily a good topology unless the task contains a good predictor for the full *d*dWs %BH%W* input space.

  • PDF

Bidirectional High-Frequency Link Inverter with Deadbeat Control

  • Salam, Zainal
    • Journal of Power Electronics
    • /
    • v.9 no.5
    • /
    • pp.726-735
    • /
    • 2009
  • This paper presents a Bidirectional High-Frequency Link (BHFL) inverter that utilizes the Deadbeat controller. The main features of this topology are the reduced size of the inverter and fewer power switches. On the secondary side of the transformer, the active rectifier employs only two power switches, thus reducing switching losses. Using this configuration, the inverter is capable of carrying a bidirectional power flow. The inverter is controlled by a Deadbeat controller, which consists of the inner current loop, outer voltage loop and a feedforward controller. Additional disturbance decoupling networks are employed to improve the system's robustness towards load variations. A 1-kVA prototype inverter has been constructed and the Deadbeat control algorithm is experimentally verified. The experimental results show that the inverter has high efficiency (91%) with low steady state output voltage total harmonics distortion (1.5%).

Dynamical Behavior of Autoassociative Memory Performaing Novelty Filtering

  • Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.17 no.4E
    • /
    • pp.3-10
    • /
    • 1998
  • This paper concerns the dynamical behavior, in probabilistic sense, of a feedforward neural network performing auto association for novelty. Networks of retinotopic topology having a one-to-one correspondence between and output units can be readily trained using back-propagation algorithm, to perform autoassociative mappings. A novelty filter is obtained by subtracting the network output from the input vector. Then the presentation of a "familiar" pattern tends to evoke a null response ; but any anomalous component is enhanced. Such a behavior exhibits a promising feature for enhancement of weak signals in additive noise. As an analysis of the novelty filtering, this paper shows that the probability density function of the weigh converges to Gaussian when the input time series is statistically characterized by nonsymmetrical probability density functions. After output units are locally linearized, the recursive relation for updating the weight of the neural network is converted into a first-order random differential equation. Based on this equation it is shown that the probability density function of the weight satisfies the Fokker-Planck equation. By solving the Fokker-Planck equation, it is found that the weight is Gaussian distributed with time dependent mean and variance.

  • PDF

Neutral-point Potential Balancing Method for Switched-Inductor Z-Source Three-level Inverter

  • Wang, Xiaogang;Zhang, Jie
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1203-1210
    • /
    • 2017
  • Switched-inductor (SL) Z-source three-level inverter is a novel high power topology. The SL based impedance network can boost the input dc voltage to a higher value than the single LC impedance network. However, as all the neutral-point-clamped (NPC) inverters, the SL Z-source three-level inverter has to balance the neutral-point (NP) potential too. The principle of the inverter is introduced and then the effects of NP potential unbalance are analyzed. A NP balancing method is proposed. Other than the methods for conventional NPC inverter without Z-source impedance network, the upper and lower shoot-through durations are corrected by the feedforward compensation factors. With the proposed method, the NP potential is balanced and the voltage boosting ability of the Z-source network is not affected obviously. Simulations are conducted to verify the proposed method.

A Research on the Bandwidth Extension of an Analog Feedback Amplifier by Using a Negative Group Delay Circuit (마이너스 군지연 회로를 이용한 아날로그 피드백 증폭기의 대역폭 확장에 관한 연구)

  • Choi, Heung-Gae;Kim, Young-Gyu;Shim, Sung-Un;Jeong, Yong-Chae;Kim, Chul-Dong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.10
    • /
    • pp.1143-1153
    • /
    • 2010
  • In this paper, we propose an alternative method to increase the distortion cancellation bandwidth of an analog RF feedback power amplifier by using a negative group delay circuit(NGDC). A limited distortion cancellation bandwidth due to the group delay(GD) mismatch discouraged the use of feedback technique in spite of its powerful linearization performance. With the fabricated NGDC with positive phase slope over frequency, the feedback amplifier of the proposed topology experimentally achieved adjacent channel leakage ratio(ACLR) improvement of 15 dB over 50 MHz bandwidth at wideband code division multiple access(WCDMA) downlink band when tested with 2-carrier WCDMA signal. At an average output power of 28 dBm, ACLR of 25.1 dB is improved to obtain -53.2 dBc at 5 MHz offset.