• Title/Summary/Keyword: Fence Electrode

Search Result 14, Processing Time 0.033 seconds

A Study on the Luminance and Luminous Efficiency Improvement of AC PDP by an Improved Fence Structure Electrode (개량된 Fence전극 구조에 의한 AC PDP의 휘도 및 효율 개선에 관한 연구)

  • Hur, Min-Nyung;Lee, Sung-Hyun;Yu, Chung-Hui;Shin, Jung-Hong;Park, Jung-Hoo
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.11
    • /
    • pp.531-535
    • /
    • 2002
  • Nowadays, the most serious problems in ac PDP are high cost and complex manufacturing processes. To solve these problems, fence electrode structure, which eliminates the need for expensive transparent electrodes, has been newly suggested. But it has a lower luminance and luminous efficiency than the conventional stripe type electrode structure. In this study, an improved fence electrode structure has been suggested in order to improve luminance and luminous efficiency. The experimental results show that the luminous efficiency of suggested structure is 25% higher than that of conventional fence electrodes.

Effect of Hump Electrode on the Discharge Voltage of ac PDP with Fence Electrode (Fence 전극을 가진 ac PDP의 방전전압특성에 미치는 돌기 전극의 영향)

  • Dong, Eun-Joo;Ok, Jung-Woo;Yoon, Cho-Rom;Lee, Hae-June;Lee, Ho-Joon;Park, Chung-Hoo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.2
    • /
    • pp.261-267
    • /
    • 2008
  • One of the most important issues in fence-type PDP is low luminance and luminous efficiency. To improve luminance and luminous efficiency, new sustain electrode structure which contains long discharge gap is necessary. However, it causes rise of firing voltage. In this paper, a new fence electrode structure is proposed in order to solve these problems. To drop the firing voltage, tow hump shaped electrodes is added on the main discharge electrode, and distance between two humps is controlled. The experimental results show that the test panel with the narrow horizontal gap(40um) between two humps shows low firing voltage by 17V compared with 80um gap in spit of similar luminance and luminous efficiency.

Effect of Aluminum Fence-type electrode Design on Characteristics of AC-PDP

  • Lee, Seog-Young;Lee, Dong-Heon;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.408-411
    • /
    • 2008
  • In an attempt to enhance luminance efficiency and to reduce discharge delays of test panels with aluminum fence-electrodes, various designs of the electrodes were prepared by chemically etching the aluminum foils bonded to soda-lime glass substrate via anodic bonding process. The effects of fence design on luminance and discharge characteristics were investigated and compared with conventional ac-PDPs. These results showed a possibility of using fence-type aluminum electrode at front plates of ac-PDDs without sacrificing its performance.

  • PDF

New Front Plate Structure of ac-PDP using Aluminum Fence-Type Electrode Coated with Anodic Aluminum Oxide

  • Lee, Mi-yeon;Yoon, Sang-Hoon;Kim, Yong-Seog
    • Journal of Information Display
    • /
    • v.8 no.4
    • /
    • pp.19-22
    • /
    • 2007
  • A new front plate structure of ac-PDP using fence-type aluminum electrode coated with anodic aluminum oxide was investigated. In this structure, ITO and glass dielectric layer were eliminated and expensive Ag BUS electrode was replaced with aluminum. Test panels were prepared using the new structure and their luminance and discharge characteristics were examined. These results indicate that the new structure provide a new way of cost reduction and enhancement of performance of ac-PDPs

New Front Plate Structure of ac-PDP using Aluminum Fence-type Electrode Coated with Anodic Aluminum Oxide

  • Lee, Mi-Yeon;Yoon, Sang-Hoon;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.127-130
    • /
    • 2007
  • A new front plate structure of ac-PDP was explored using fence-type aluminum electrode coated with anodic aluminum oxide.[1] In this structure, ITO and glass dielectric layer were eliminated and expensive Ag BUS electrode was replaced with aluminum. Test panels were prepared using the new structure and their luminance and discharge characteristics were examined. These results indicate that the new structure provide a new way of cost reduction and enhancement of performance of ac-PDPs

  • PDF

Improvement of the ac PDP Performance by Simple Modification Of the Fence Electrode Structure

  • Park, Chung-Hoo;Hur, Min-Nyung;Kim, Dong-Hyun;Lim, Sung-Hyun;Lee, Ho-Jun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2002.08a
    • /
    • pp.601-604
    • /
    • 2002
  • We propose modified fence electrode structure for manufacturing of ITO-electrode-free PDP. Luminance, luminance efficiency and addressing time for the proposed structure shows performance improvement about 25 percent. Our results can be used for the reduction of manufacturing cost without degradation of PDP performance.

  • PDF

A Study on the Improvement of the luminous Efficiency in AC-PDP Fence electrode structure with Floating electrode (Floating전극 도입으로 인한 AC-PDP Fence 전극 구조의 효율 개선 연구)

  • Seok, Chang-Woo;Shim, Seung-Bo;Hwang, Seok-Won;Lee, Don-Kyu;Kim, Dong-Hyun;Lee, Hae-Jun;Park, Jung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1309-1310
    • /
    • 2008
  • 최근 대형 FPD로 주목받고 있는 PDP는 높은 방전개시전압과 투명전극인 ITO를 사용함으로서 가격이 상승하는 문제점이 있다. 그래서 본 논문에서는 ITO전극 대신 금속(Ag) BUS전극을 사용해 저가격화를 이룰 수 있는 Fence전극구조에 Floating전극을 도입함으로서 방전개시전압을 낮추고 효율을 개선할 수 있는 새로운 Fence전극구조를 제안하였다. 실험은 reference와 제안된 구조로 구성되어 있는 4-inch AC PDP에 Test Panel을 직접 제작하여 firing voltage, discharge current, luminanace, luminous efficiency를 측정하여 비교하였다. 제안된 구조는 방전개시전압이 최대 20V감소하고 방전전류가 최대 17%감소하였고 효율면에서도 최대 13%의 상승을 보였다.

  • PDF

The study on the electrical and optical characteristics of the new electrode structure for AC PDP (AC PDP의 새로운 전극구조에 따른 전기.광학적 특성연구)

  • Hur, Min-Nyng;Kim, Goon-Ho;Kim, Doyng-Hyun;Kim, Gyu-Seop;Lee, Ho-Jun;Park, Chung-Hoo
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1579-1581
    • /
    • 2001
  • Nowadays, the most serious problems in AC PDP are high cost and a complex manufacturing process. To solve these problems, Fence electrode structure are newly suggested. In this paper, we investigated the the electrical and optical characteristics as the structure of Fence electrode was changed, and suggested the optimum width and arrangement of electrode.

  • PDF

Bendable ac-PDP using Fence-Structured Electrodes on Polyethylene Terephthalate Substrate

  • Choi, Won-Yeol;Hong, Cho-Rong;Kim, Yong-Seog
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.593-596
    • /
    • 2007
  • A possibility of manufacturing bendable ac-PDP using aluminum electrode with anodic aluminum oxide dielectric material system on PET film substrate was explored. For this structure, PET film with fence-structured aluminum electrodes was used for front plate and PET film with barrier ribs of UV curable resin for the rear plate. The results demonstrate that it is feasible to manufacture the bendable ac-PDPs using those material system and are expected to expand the applications of plasma display panels.

  • PDF

Effect of Cross-bar Length on Luminous Efficacy in AC-PDP with Fence Electrode Stricture

  • Nam, Hyung-Woo;Choi, Yong-Suk;Bae, Hyo-Won;Kim, Yun-Gi;Ok, Jung-Woo;Kim, Dong-Hyun;Lee, Ho-Jun;Lee, Hae-June;Park, Chung-Hoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.721-724
    • /
    • 2009
  • In this paper, we proposed fence electrode structures. The experimental structures change cross-bar length as 145, 105, 65 and $30{\mu}m$ to improve the electro-optical characteristics. The proposed structures improve the addressing time and luminous efficacy compared with the T145 structure which has the cross-bar length of $145{\mu}m$ as the reference. Especially, in the case of the T30 structure with cross-bar length of $30{\mu}m$, it gains lower power consumption by 34%, and higher luminous efficacy by 20% than those of the reference structure.

  • PDF