• Title/Summary/Keyword: Fermented coffee

Search Result 25, Processing Time 0.023 seconds

A Comparison of Antioxidant Effects among Non-fermented and Fermented Columbian Coffee, and Luwak Coffee Beans (발효 유무에 따른 콜롬비아 커피와 루왁커피의 항산화 활성 비교연구)

  • Kim, Song-Suk
    • Korean journal of food and cookery science
    • /
    • v.30 no.6
    • /
    • pp.757-766
    • /
    • 2014
  • The purpose of this study was to investigate the antioxidant effects of non-fermented (CAC) and Monascus pilosus-fermented Columbia arabica coffee (FCAC), as well as Luwak coffee (LC) beans. The results indicated that total polyphenols content (mg/g of dry basis) was highest in CAC (70.69), followed by LC (62.07), and FCAC (41.38). However, the ratio of total flavonoids/polyphenols in FCAC was the highest. In terms of electron donating ability (%, coffee mg/mL), CAC was significantly higher than LC and FCAC. Regardless of fermentation, ferric reducing antioxidant powers were similar in CAC and FCAC and lowest in LC. LC also had the highest inhibitory activity against xanthine oxidase (XO). However FAAC had the highest inhibitory activity against aldehyde oxidase (AO), with nearly three times the levels found in CAC and LC. According to the above results, FCAC had a higher ratio of flavonoids/polyphenols and iron chelating activity than CAC. FCAC also had the highest AO inhibitory activity among the three experimental coffee beans. The results suggest that further studies are required to evaluate the bioactive components of various coffee beans so as to determine the potential benefits that coffee may have on preventing oxidative stress-related conditions.

Physiological Activity of Roasted Coffee prepared from Fermented Green Coffee Bean with Monascus ruber Mycelium (홍국균(Monascus ruber) 균사체-커피생두 발효물로부터 조제된 원두커피의 생리활성)

  • Kim, Hoon;Suh, Hyung-Joo;Shin, Ji-Young;Hwang, Jong-Hyun;Yu, Kwang-Won
    • The Korean Journal of Food And Nutrition
    • /
    • v.29 no.1
    • /
    • pp.1-11
    • /
    • 2016
  • To enhance the physiological activities of roasted coffee (RC), 30 kinds of green coffee beans (GCB) with different cultivating areas and varieties were fermented with Monascus ruber mycelium (MR) by solid-state culture. After the dried MR-fermented GCB was subjected medium roasting, each RC was extracted with hot-water. Among the hot-water extracts, the highest yield was the hot-water extract of RC from MR-fermented Indonesia Mandheling GCB (15.5%). However, the hot-water extract of RC from MR-fermented Ethiopia Sidamo GCB showed significantly higher polyphenolic contents (3.08 mg GAE/100 mg) and ABTS free radical scavenging activity (25.41 mg AEAC/100 mg). Meanwhile, the hot-water extract of RC from MR-fermented Vietnam Robusta GCB showed not only the effective inhibition of $TNF-{\alpha}$ level (73.7% inhibition of LPS-stimulated control) from LPS-stimulated RAW 264.7 cells but also significant inhibition of lipogenesis (63.5% inhibition of lipid differentiation control) in 3T3-L1 pre-adipose cells. In conclusion, these results suggest that roasted coffees from Ethiopia Sidamo and Vietnam Robusta green coffee beans fermented with Monascus ruber mycelium using solid-state culture could have industrial applications as functional coffee beverages.

Effects of fermented coffee on human gut microbiota (발효커피가 사람장내미생물에 미치는 영향)

  • Ko, Gwangpyo;Kim, Jin-Kyeong;Jo, Seong-Wha;Jeong, Do-Youn;Unno, Tatsuya
    • Journal of Applied Biological Chemistry
    • /
    • v.63 no.1
    • /
    • pp.83-87
    • /
    • 2020
  • Fermented foods have been recognized as functional foods that provide health benefits, including the modulation of intestinal microbiota. Therefore, the aim of the present study was to examine the effects of coffee beans fermented with Lactobacillus plantarum and Bacillus amyloliquefaciens on healthy human gut microbiota. Fermentation increased the content of beneficial substances (i.e., flavonoids and polyphenols). The consumption of fermented coffee increased the occurrence of beneficial microorganisms such as fiber degraders and short-chain fatty acid producers, although no significant microbiota shifts were observed after the coffee consumption. The analysis of metabolic activities also showed no difference after the coffee consumption. Our study demonstrates that the consumption of the fermented coffee may increase some beneficial bacterial while remaining the gut microbiota and its activities.

Quality Characteristics and Antioxidant Activity of Espresso Coffee Prepared with Green Bean Fermented by Lactic Acid Bacteria (유산균 발효 생두를 이용한 에스프레소 커피의 품질 특성 및 항산화 활성)

  • Kim, Dong-Ho;Yeon, Soo-Ji;Jang, Keum-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.45 no.12
    • /
    • pp.1799-1807
    • /
    • 2016
  • This study investigated the quality characteristics and antioxidant activities of espresso coffee prepared with green bean fermented by lactic acid bacteria. First, 10, 20, and 30% (w/v) green beans were fermented by Lactobacillus acidophilus KCTC 3145 at $37^{\circ}C$ for 0, 12, and 24 h, respectively. Cells of L. acidophilus gradually increased with increasing green bean content and fermentation time. After drying fermented green beans, coffee powders were prepared by roasting (city level) and grinding (<75 mesh). Then, espresso coffee was extracted using coffee powder. The pH and chromaticity (L*, a*, and b* values) of espresso coffee decreased with fermentation time, whereas total acidity, total soluble solid contents, and brown color intensity increased. The pH level decreased with increasing contents of fermented green bean and total acidity increased. However, chromaticity, total soluble solid contents, and brown color intensity remained within a limited range. The antioxidant activities, including total polyphenol content, and DPPH and ABTS radical scavenging activities increased with increasing green bean content and fermentation time. Finally, sensory evaluation -for taste, color, flavor, and overall preference- revealed espresso coffee prepared with fermentation of 30% (w/v) green bean received the highest scores. Green bean fermented by lactic acid bacteria enhanced quality characteristics and antioxidant activities of espresso coffee, showing that lactic acid bacteria fermentation has potential use in the espresso coffee industry.

The Pharmacological Activity of Coffee Fermented Using Monascus purpureus Mycelium Solid-state Culture Depends on the Cultivation Area and Green Coffees Variety (원산지 및 품종에 따라 조제된 홍국균 균사체-고체발효 원두커피의 생리활성)

  • Kim, Hoon;Yu, Kwang-Won;Lee, Jun-Soo;Baek, Gil-Hun;Shin, Ji-Young
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.79-86
    • /
    • 2014
  • In previous work, we fermented coffee beans using solid-state culture with various fungal mycelia to enhance the physiological activity of the coffee. The coffee fermented with Monascus sp. showed a higher physiological activity than non-fermented coffee or other coffees fermented with mushroom mycelium. The aim of this study was to characterize the various fermented coffees with respect to their area of cultivation and their variety using Monascus purpureus (MP) mycelium solid-state culture. Thirty types of green coffee beans, which varied in terms of their cultivation area or variety, were purchased from different suppliers and fermented with MP under optimal conditions. Each MP-fermented coffee was medium roasted and extracted further using hot water (HW) under the same conditions. Of the HW extracts, those derived from MP-Mandheling coffees had the highest yield (13.6-15.5%), and MP-Robusta coffee showed a significantly higher polyphenolic content (3.03 mg gallic acid equivalent/100 mg) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) free radical scavenging activity (27.11 mg ascorbic acid equivalent antioxidant capacity/100 mg). Furthermore, in comparison to other MP-fermented coffees at $1,000{\mu}g/mL$, MP-Robusta coffee showed not only the most effective inhibition of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) production in LPS-stimulated RAW 264.7 cells (67.1% of that in LPS-stimulated control cells), but also an effective inhibition of lipogenesis in 3T3-L1 adipose cells (22.2% of that in differentiated control cells). In conclusion, these results suggest that Vietnam Robusta coffee beans solid-state fermented with MP mycelium are amenable to industrial applications as a functional coffee beverage or material.

Quality characteristics of in vitro luwak coffee produced using enzyme and microbial complexes (효소 및 미생물 복합체를 사용한 인비트로 루왁 커피의 품질 특성)

  • Hye-Mi Kang;Shin-Yeong Oh;Hye-Min Kang;Joong-Ho Kwon;Yong-Jin Jeong
    • Food Science and Preservation
    • /
    • v.30 no.2
    • /
    • pp.287-299
    • /
    • 2023
  • In vitro luwak coffee was produced using enzyme­microbial complexes. The coffee quality of non-fermented coffee beans (NFC) and fermented coffee beans (FC) was compared. The total free amino acid content was higher in FC than in NFC. The levels of glutamic acid and γ-amino-n-butyric acid in NFC were higher than those in FC; however, the contents of essential amino acids, such as lysine, leucine, and valine, in FC were higher than in NFC. During fermentation, the sucrose content decreased, whereas the fructose and glucose contents increased (p<0.001). The chromaticity of the coffee extract showed higher lightness (L), redness (a), and yellowness (b) values in FC than those in NFC. The caffeine content was significantly lower in FC (696.94±0.04 ㎍/mL) compared to that in NFC (1,130.22±1.55 ㎍/mL) (p<0.001). Conversely, the polyphenol and chlorogenic acid contents were significantly higher in NFC than in FC (p<0.001). Electronic nose analysis indicated considerable differences between the volatile aromatic components in NFC and FC. Sensory scores were significantly higher for FC than those for NFC. Therefore, the fermentation of coffee beans using enzyme­microbial complexes altered the chemical components, which promoted the Maillard reaction during the coffee bean roasting process. These results suggest the possibility of producing in vitro luwak coffee with better flavor and lower caffeine content.

Effects of Coffee and Aflatoxin B1 on the Pancreatic Exocrine Function and Structure (Coffee와 Aflatoxin B1이 췌장의 외분비 기능 및 조직에 미치는 영향)

  • 안혜선
    • Journal of Nutrition and Health
    • /
    • v.26 no.3
    • /
    • pp.268-276
    • /
    • 1993
  • Coffee is known to increase pancreatic secretion of digestive enzymes. The mutagen, aflatoxin B1(AFB1) is contained in fermented foods and known to increase the specific activities of pancreatic chymotrypsin, trypsi, amylase, and lipase. Nowadays, coffee intake is increased among Koreans who have consumed relatively high amount of traditional fermented foods. Therefore, this study was performed to examine the effect of coffee and AFB1 on pancreatic exocrine function and structure. Rats were divided into 10 experimental groups. The first five groups were W(control group), LD(0.2g decaffeinated coffee/Kg B.W), HD(3g decaffeinated coffee/Kg B.W), LC(0.2g coffee/Kg B.W), and HC(3g coffee/Kg B.W). The second five groups were WA, LDA, HDA, LCA, HCA, same as first five groups in caffieine level but treated with AFB1. The result of this experiment showed that the caffeine intake did not influence significantly on the growth and feed efficiency. But water intake was increased by caffeine intake and AFB1 treatment. The weights of pancreas and liver were increased as the caffeine intake was increased. Trypsin activities were tend to increase in concentrated coffee groups(HD, HC). AFB1 treated groups showed the higher trypsin level than the AFB1 untreated groups. Amylase activities were tend to increase in concentrated coffee groups(HD, HC) of AFB1 untreated animals. AFB1 treated did not show the additional effect on the stimulated amylase secretion by coffee. Lipase activities were tend to decrease in concentrated coffee groups(HD, HC) of AFB1 untreated animals. Lipase activities were increased in the order named WA group, coffee groups, decaffeinated coffee groups in AFB1 treated animals. AFB1 treated groups showed the higher lipase level than AFB1 untreated groups. In the histologic observation of pancreas HCA group showed more dense compound tubuloalveolar glands and proliferation of nuclei than normal. The result suggested a development of a atypia which is ongoing phase to a cancer.

  • PDF

Effects of fermentation on protein profile of coffee by-products and its relationship with internal protein structure measured by vibrational spectroscopy

  • Samadi;Xin Feng;Luciana Prates;Siti Wajizah;Zulfahrizal;Agus Arip Munawar;Peiqiang Yu
    • Animal Bioscience
    • /
    • v.36 no.8
    • /
    • pp.1190-1198
    • /
    • 2023
  • Objective: To our knowledge, there are few studies on the correlation between internal structure of fermented products and nutrient delivery from by-products from coffee processing in the ruminant system. The objective of this project was to use advanced mid-infrared vibrational spectroscopic technique (ATR-FT/IR) to reveal interactive correlation between protein internal structure and ruminant-relevant protein and energy metabolic profiles of by-products from coffee processing affected by added-microorganism fermentation duration. Methods: The by-products from coffee processing were fermented using commercial fermentation product, called Saus Burger Pakan, consisting of various microorganisms: cellulolytic, lactic acid, amylolytic, proteolytic, and xylanolytic microbes, for 0, 7, 14, 21, and 28 days. Protein chemical profiles, Cornell Net Carbohydrate and Protein System crude protein and CHO subfractions, and ruminal degradation and intestinal digestion of protein were evaluated. The attenuated total reflectance-Ft/IR (ATR-FTIR) spectroscopy was used to study protein structural features of spectra that were affected by added microorganism fermentation duration. The molecular spectral analyses were carried using OMNIC software. Molecular spectral analysis parameters in fermented and non-fermented by-products from coffee processing included: Amide I area (AIA), Amide II (AIIA) area, Amide I heigh (AIH), Amide II height (AIIH), α-helix height (αH), β-sheet height (βH), AIA to AIIA ratio, AIH to AIIH ratio, and αH to βH ratio. The relationship between protein structure spectral profiles of by-products from coffee processing and protein related metabolic features in ruminant were also investigated. Results: Fermentation decreased rumen degradable protein and increased rumen undegradable protein of by-products from coffee processing (p<0.05), indicating more protein entering from rumen to the small intestine for animal use. The fermentation duration significantly impacted (p<0.05) protein structure spectral features. Fermentation tended to increase (p<0.10) AIA and AIH as well as β-sheet height which all are significantly related to the protein level. Conclusion: Protein structure spectral profiles of by-product form coffee processing could be utilized as potential evaluators to estimate protein related chemical profile and protein metabolic characteristics in ruminant system.

Effects of dietary fermented spent coffee ground on nutrient digestibility and nitrogen utilization in sheep

  • Choi, Yongjun;Rim, Jong-su;Na, Youngjun;Lee, Sang Rak
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.3
    • /
    • pp.363-368
    • /
    • 2018
  • Objective: The objective of the study was to determine the effect of fermented spent coffee ground (FSCG) on nutrient digestibility and nitrogen utilization in sheep. Methods: Fermentation of spent coffee ground (SCG) was conducted using Lactobacillus plantrum. Fermentation was performed at moisture content of 70% and temperature of $39^{\circ}C$ with anaerobic air tension for 48 h. Four adult rams (initial body weight = $56.8{\pm}0.4kg$) were housed in a respiration-metabolism chamber and the treatments were: i) control (Basal diet; 0% SCG or FSCG), ii) 10% level of SCG, iii) 10% level of FSCG, and iv) 20% level of FSCG in $4{\times}4$ Latin square design. Each dietary experiment period lasted for 18-d with a 14-d of adaptation period and a 4-d of sample collection period. Results: In SCG fermentation experimental result, acid detergent insoluble nitrogen (ADIN) concentration of FSCG (64.5% of total N) was lower than that of non-fermented SCG (78.8% of total N). Digestibility of dry matter and organic matter was similar among treatment groups. Although crude protein (CP) digestibility of the control was greater than FSCG groups (p<0.05), the 10% FSCG group showed greater CP digestibility and nitrogen retention than non-fermented 10% SCG group (p<0.05). Body weight gain and average daily gain were linearly decreased with increasing FSCG feeding level (p<0.05). When the feeding level of FSCG was increased, water intake was linearly increased (p<0.05). With an increasing FSCG level, dry matter intake did not differ among groups, although the gain to feed ratio tended to decrease with increasing level of FSCG (p<0.10). Conclusion: Microbial fermentation of SCG can improve protein digestibility, thereby increasing CP digestibility and nitrogen utilization in sheep. Fermentation using microorganisms in feed ingredients with low digestibility could have a positive effect on improving the quality of raw feed.

Anti-inflammatory Activities of Cold Brew Coffee Using Dry Fermentation of Lactobacillus plantarum (건식발효를 이용한 유산균 더치 커피의 항염증 효과)

  • Go, Seok Hyeon;Monmai, Chaiwat;Jang, A Yeong;Lee, Hyungjae;Park, Woo Jung
    • Food Engineering Progress
    • /
    • v.22 no.4
    • /
    • pp.337-343
    • /
    • 2018
  • Coffee is a commonly consumed beverage that contains anti-inflammatory compounds such as caffeine, chlorogenic acid, cafestol, trigonelline, and kahweol. Lactobacillus plantarum is a lactic acid bacterium most frequently used in the fermentation of food products of plant origin. L. plantarum is able to degrade some food phenolic compounds and provide high value-added compounds such as powerful antioxidants or food additives approved as flavouring agents. In this study, we investigated the anti-inflammatory effects of coffee extract fermented by L. plantarum on RAW264.7 macrophages. In lipopolysaccharide-stimulated RAW264.7 cells, these coffee extracts exhibited anti-inflammatory activities through the reduction of nitric oxide (NO) production and inducible NO synthase expression. Fermented coffee extracts significantly decreased the expression of inflammatory cytokines such as tumor necrosis factor ${\alpha}$, interleukin $1{\beta}$, interleukin 6, and interferon ${\gamma}$. Cyclooxygenase-2, which is one of the key biomarkers for inflammation, was significantly suppressed. These results might be helpful for understanding the anti-inflammatory mechanism of fermented coffee extract on immune cells and, moreover, suggest that fermented coffee extract may be a beneficial anti-inflammatory agent.