• Title/Summary/Keyword: Fiber Content Ratio

Search Result 441, Processing Time 0.031 seconds

Investigations on the tensile strength of high-performance fiber reinforced concrete using statistical methods

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.389-400
    • /
    • 2006
  • This paper presents the investigations towards developing a better understanding on the contribution of steel fibers on the tensile strength of high-performance fiber reinforced concrete (HPFRC). An extensive experimentation was carried out with w/cm ratios ranging from 0.25 to 0.40 and fiber content ranging from zero to 1.5 percent with an aspect ratio of 80. For 32 concrete mixes, flexural and splitting tensile strengths were determined at 28 days. The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Based on the test results, mathematical models were developed using statistical methods to predict 28-day flexural and splitting tensile strengths of HPFRC for a wide range of w/cm ratios. The expressions, being developed with strength ratios and not with absolute values of strengths and are applicable to wide range of w/cm ratio and different sizes/shapes of specimens. Relationship between flexural and splitting tensile strengths has been developed using regression analysis and absolute variation of strength values obtained was within 3.85 percent. To examine the validity of the proposed model, the experimental results of previous researchers were compared with the values predicted by the model.

An Experimental Study on Alkali-Silicate Reaction of Fiber Reinforced Concrete Containing Waste Glass (폐유리를 혼입한 섬유보강 콘크리트의 알카리-실리카 반응에 관한 실험적 연구)

  • Lee, Bong-Chun;Lee, Taek-Woo;Kwon, Hyuk-Joon;Lee, Jun;Park, Seung-Bum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.49-54
    • /
    • 2001
  • Using waste glass in concrete can cause crack and strength loss by the expansion of alkali-silica reaction(ASR). In this study, ASR expansion and properties of strength were analyzed in terms of brown waste glass content, and fibers(steel fiber, polypropylene fiber) and fiber content for reduction ASR expansion due to waste glass. In this accelerated ASTM C 1260 test of waste glass, pessimum content can not be found. Also, when used the fibers with waste g1ass, there is an effect on reduction of expansion and strength loss due to ASR between the alkali in the cement paste and the silica in the waste glass. Specially, adding 1.5 vol.% of steel fiber to 20% of waste glass the expansion ratio was reduced by 40% and flexural strength was developed by up to 110% comparing with only Waste glass ( $80^{\circ}C$ $H_{2}$ O curing).

  • PDF

Compressive and Flexural Properties of Concrete Reinforced with High-strength Hooked-end Steel Fibers (고강도 후크형 강섬유로 보강된 콘크리트의 압축 및 휨 성능)

  • Wang, Qi;Kim, Dong-Hwi;Yun, Hyun-Do;Jang, Seok-Joon;Kim, Sun-Woo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.209-217
    • /
    • 2021
  • This paper investigates the effect of high strength hooked-end steel fiber content and aspect ratio on the compressive and flexural performance of concrete. A total of ten mixtures were prepared and tested. Concretes with specific compressive strength of 30 MPa were reinforced with three different aspect ratios (l/d) of steel fibers 64, 67, and 80 and three different percentages of steel fibers 0.25, 0.50, and 0.75% by volume of concrete. Tensile strengths of steel fibers with l/d of 64, 67, and 80 are 2,000, 2,400, and 2,100 MPa, respectively. The compressive and flexural properties of plain and steel fiber-reinforced concrete (SFRC) mixtures were evaluated and compared. The experimental results indicated that the incorporation of high-strength hooked-end steel fibers had significant effects on the compressive and flexural performance of concrete. With the increase of steel fiber content, compressive performances, such as Poisson's ratio and toughness, of concrete were improved. The steel fibers with the least l/d of 67 resulted in a larger enhancement of compressive performances. The residual flexural strength, that is, post-cracking flexural resistance and toughness, of concrete is mainly depended on the dosage and aspect ratio of steel fibers. The residual flexural strength at serviceability (SLS) and ultimate limit state (ULS) defined in fib Model Code 2010 (MC2010) is increased as the fiber content and aspect ratio increase.

Influence of steel fiber contents on corrosion resistance of steel reinforcement (강섬유 혼입량이 철근 부식저항성능에 미치는 영향)

  • Kim, Seong-Do;Moon, Do-Young;Lee, Gyu-Phil
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.283-293
    • /
    • 2015
  • In order to evaluate corrosion resistance of steel fiber-reinforced concrete, accelerated chloride migration and surface resistivity tests were conducted. In addition air content of fresh concrete, compressive strength and water absorption were measured for investigating fundamental characteristics of concrete. Two different water-cement ratios(0.44, 0.5) and three steel fiber contents(0.25%, 0.5%, 1%) were considered as variables. Note that all specimens cast with same compaction work. As a results, corrosion resistance decreased as steel fiber contents increased regardless of water-cement ratio when the concrete was compacted with same amount of work done. However, for concrete with same steel fiber content, the lower water-cement ratio showed the better corrosion resistance. It is found that enhancement of fluidity and enough compaction should be done for corrosion resistance of SFRC.

Ethylene gas adsorption capacity and preserving effect of fruit freshness of Charcoal-fiberboard by wet forming process (습식공법으로 제조한 목탄-목재섬유복합재료의 에틸렌가스 흡착력과 과일 신선도 유지 효과)

  • Lee Hwa Hyoung;Kim Gwan Eui
    • Journal of the Korea Furniture Society
    • /
    • v.14 no.1
    • /
    • pp.1-9
    • /
    • 2003
  • This research was carried out for packing materials and building materials to examine thylene gas adsorption and effect of keeping fruit fresh of wet formed charcoal-fiber mposite made from defibrated fiber of Pinus densiflora Sieb. et Zucc. and white charcoal from uercus variabilis Bl.(wood fiber: charcoal=8:2, 6:4, 4:6, 2:8), with/without phenol formaldehyde resin(PF, Non volatile content:$52\%$, resin content $1,3,5\%$). The results are summarized as follows: 1. The higher the charcoal content, the more the ethylene gas adsorption. At the same mixing ratio of fiber to charcoal, $\#100-200$ of charcoal particle size gave the better reslts than $\#60-100$. 2. Adding PF into the charcoal fiber composite decreased the capacity of ethylene gas adsorption but there was no significant difference until $5\%$ adding amount of PF. 3. For keeping fruit fresh for a long time, Charcoal fiber composite was $66\%$ longer than control. The higher the white charcoal content, the longer fresh time.

  • PDF

Wood Fiber-Thermoplastic Fiber Composites by Turbulent Air Mixing Process(I) - Effects of Process Variables on the Physical Properties of Composites - (난기류 혼합법을 이용한 목섬유-열가소성 섬유 복합재에 관한 연구(I) - 공정변수가 복합재의 물리적 성질에 미치는 영향 -)

  • Yoon, Hyoung-Un;Lee, Phil-Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.101-109
    • /
    • 1996
  • Effects of process variables were evaluated in physical properties of the wood fiber-thermoplastic fiber composites using nonwoven web method. Turbulent air mixer using compressed air was employed to mix wood fiber with two types of thermoplastic polypropylene and nylon 6 fibers. The optimal hot press temperature and time were found to be $190^{\circ}C$ and 9 minutes in wood fiber-polypropylene fiber composite and to be $220^{\circ}C$ and 9 minutes in wood fiber-nylon 6 fiber composite. As the density of wood fiber-polypropylene fiber composite and wood fiber-nylon 6 fiber composite increased, the physical properties were improved The density appeared to be the most significant factor on physical properties in the statistical analysis. The composition ratio of polypropylene or nylon 6 fiber to wood fiber was considered not to be statistically significant factor. The thickness swelling decreased somewhat in wood fiber-polypropylene fiber composite and wood fiber-nylon 6 fiber composite as the content of synthetic fiber increased. As the increase of mat moisture content, dimensional stability was improved in wood fiber-polypropylene fiber composite but not in wood fiber-nylon 6 fiber composite.

  • PDF

Evaluation of Flexural Strength for Normal and High Strength Concrete with Hooked Steel Fibers (갈고리형 강섬유를 혼입한 보통 및 고강도 콘크리트의 휨강도 평가)

  • Oh, Young-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.4
    • /
    • pp.531-539
    • /
    • 2008
  • The purpose of this study is to investigate the mechanical properties of high strength concretes reinforced with hooked steel fiber. For this purpose, total 36 specimens whose variables are concrete compressive strength, steel fiber aspect ratio, and steel fiber volume contents, are made and tested. From the test results including previous research work, flexural performance of steel fiber reinforced high strength concrete is evaluated in terms of flexural strength and toughness index. Flexural behavior of steel fiber reinforced high strength concrete is enhanced with respect to the fiber volume content, the aspect ratio, and concrete compressive strength. More efforts are devoted to evaluate quantitatively between the flexural strength and the structural parameters such as the fiber volume content, the aspect ratio, and concrete compressive strength.

A Study of Fine Fiber Formation and Physical Properties of Polyacrylonitrile Copolymer (폴리아크릴로니트릴 공중합체의 극세 섬유제조 및 그 물성)

  • Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.14 no.3
    • /
    • pp.472-477
    • /
    • 2012
  • The conditions of wet spinning were considered in order to prepare the fine denier of acrylic fiber. Polyacrylonitrile copolymer was synthesized by the copolymerization of acrylonitrile (AN) and methyl acrylate (MA) initiated by an aqueous sulfite-chlorate redox system. Acrylic fiber was manufactured through wet-spinning in a dimethyl formamide (DMF) system. The conditions of wet-spinning were investigated by i-value, spinning speed, diameter of spinneret, draw ratio, water content of spinning dope and morphology of protofiber. The physical properties of fibers were investigated by Instron. In this experiment, the minimum i-value decreased with the decreasing spinneret diameter, an increased spinning speed, and an increased coagulation bath (CBC) concentration. The maximum draw ratio increased with an increased CBC. The optimum CBC and water content of the spinning dope were 60%-65% and 3.5%, respectively. The tenacity at the breaking point increased with a decreased fineness of fiber. The elongation at breaking point was almost the same value as a function of the fineness of fiber.

Comparative Review on the Pantyhose Labels according to Producing Countries (팬티스타킹 품질표시에 대한 국가별 비교)

  • 최종명;권수애
    • Journal of the Korean Home Economics Association
    • /
    • v.41 no.3
    • /
    • pp.45-56
    • /
    • 2003
  • The purpose of this study was to compare the pantyhose labels of domestic products which contain fiber content, size spec., care symbol, performance properties with those of foreign-made ones, in order to propose a desirable model of label description for the domestic products. The results were as follows: 1) There were differences in the fiber content and fiber mixture ratio of pantyhose on the label according to the countries. The pantyhoses made in Korea and Japan were described only fiber name on the label, while the pantyhoses made in U.S.A., Taiwan, and England were described fiber name and percent of fiber mixture ratio in detail on the label. 2) Most of the pantyhose size produced and sold in Korea were same Free size, but the products from other countries (U.S.A., England, Japan, Taiwan) were sold in various sizes. 3) There were differences, according to the countries, in the care symbol and related explanation of pantyhose on the label. The pantyhoses made in Korea and Taiwan were described care symbol only on the label, while the pantyhoses made in other countries were described additional explanation for care as well as care symbol on the label. 4) It was known that, unlike Korea, other countries were developing and marketing various types of functional pantyhose. For example, U.S.A. and England were focusing on appearance and comfort aspects of pantyhose, while Japan and Taiwan were focusing to develop functional pantyhose like anti-bacterial and anti-ultraviolet ray pantyhose.

A Study on the Mechanical Properties of Polypropylene Fiber Reinforced Concrete According to the Fiber Types (폴리프로필렌 섬유보강콘크리트의 섬유형태에 따른 역학적 특성에 관한 연구)

  • 박승범;오광진;박병철;장석호;이봉춘
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.321-327
    • /
    • 1996
  • The result of an experimental study on the mechanical properties of different types of polypropylene fiber reinforced concrete are presented in this paper. This study has been performed to obtain the properties of PFRC such as slump, Vee-Bee time, compressive strength, tensile strength, flexural strength, toughness and resistance to impact. The test variables are fiber content, fiber types, fiber length and W/C ratio. Polypropylene fibers were effective in reinforcing the matrix. A remarkable increase in toughness was observed by the addition of polypropylene fibers.

  • PDF