• 제목/요약/키워드: Fiber Orientation Function

검색결과 53건 처리시간 0.034초

화상처리에 의한 섬유배향각 분포측정에 있어서 교차점합산법의 정밀도 (Accuracy of Intersection Counting Method in Measurement of Fiber Orientation Angle Distribution Using Image Processing)

  • 이상동;박준식;이동기;한길영;김이곤
    • 한국정밀공학회지
    • /
    • 제15권12호
    • /
    • pp.97-105
    • /
    • 1998
  • The fiber oriented condition inside fiber reinforced composite material is a basic factor of mechanical properties of composite materials. It is very important to meausure the fiber orientation angle for the determination of molding conditions, mechanical characteristics, and the design of composite materials. In the work, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine the accuracy of intersection counting method. The fiber orientation function measured by intersection counting method using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the scanning line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.

  • PDF

농도법에 의한 GFRP 복합재료의 섬유배향각 분포측정 (Measurement of Fiber Orientation-Angle Distribution of Glass Fiber Reinforced Polymeric Composite Materials by Intensity Method)

  • 김혁;안종윤;이동기;한길영;김이곤
    • 한국정밀공학회지
    • /
    • 제13권6호
    • /
    • pp.34-44
    • /
    • 1996
  • In order to examine the accuracy of the intensity method, the fiber orientation-angle distribution of fiber-reinforced polymeric composites is measured using image processing. The fiber orientation function is calculated from the fiber orientation measured by the soft X-ray photograph. Theoretical and experimental results of fiber orientation function are compared for the composites with different fiber contents and fiber orientations. The intensity method is used for the experimental investigation and the measured fiber orientation function is compared to the calculated one. The relations between the measured and the simulated fiber orientation functions $J{\small{M}}$ and $J{\small{S}}$ respectively are identified. For the fiber length of 1.000mm and 2.000mm, it shows that $J{\small{M}}=0.83J{\small{M}}$. However. in general. the value of $J{\small{M}}$ decreases as the fiber length increases. For GFRP composites the relations between $J{\small{M}}$ and theoretical value J show that $J{\small{M}}$=0.73J for short fiber and $J{\small{M}}$=0.81J for long fiber.

  • PDF

섬유배향각 분포측정에 있어서 농도법의 정밀도에 미치는 섬유종횡비와 면적비의 영향 (Effects of Aspect and Area Ratio of Fiber on the Accuracy of Intensity Method in Measurement of Fiber Orientation-Angle Distribution)

  • 이상동;김혁;이동기;한길영;김이곤
    • 대한기계학회논문집A
    • /
    • 제22권4호
    • /
    • pp.953-959
    • /
    • 1998
  • To investigate accuracy of intensity method for measurement of the fiber orientation distribution, fiber orientation function is calculated by drawing simulation figures for the fiber orientation as varying fiber aspect ratio, fiber area ratio, and fiber orientation state, respectively. The values of fiber orientation function measured by intensity method are compared with the calculated values of fiber orientation function. The results show that measurement accuracy of the fiber orientation angle distribution by intensity method is affected by the fiber aspect ratio when the total length of oriented fiber is same. The average gradient of fiber orientation function is 0.94 for 1000mm of the total fiber length and is 0.93 for 2000 mm when the fiber aspect ratio is over 50. Measurement accuracy by intensity method is about 94% and the reliable data can be obtained by intensity method.

섬유배향각 분포측정에 잇어서 교점계수법의 정밀도에 미치는 섬유종횡비와 면적비의 영향

  • 이상동;김혁;한길영;김이곤
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.659-663
    • /
    • 1995
  • The fiber oriented conditied inside fiber reinforced composite material is a basic factor of mechanical properties of composite materials. It is very important to measure the fiber orientation angel for the determination of molding conditions, mechanical charactistics, and the design of composite materials. In the work, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine thr accuracy of intersection counting method. The fiber orientation function measured by intersection countingmethod using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the secant line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.

섬유강화 플라스틱 복합판의 구조와 분리.배향에 관한 연구 (A study on structure and separation orientation of fiber-reinforced thermoplastic sheet)

  • 이동기;조광현
    • 한국정밀공학회지
    • /
    • 제10권2호
    • /
    • pp.104-113
    • /
    • 1993
  • Characteristics of fiber-reinforced thermoplastic sheet depend on the quantity and shape of fibers. During a molding process of composites, the fiber-maxtrix separation and fober orientation are caused by the flow during the molding process. As a result, the product tends to be nonhomogeneous and anisotropic. Hence, it is very important to clarify the relations between separation-orientation and molding conditions. The correlation between the separation and the orientation have to be clarified for designing the fiber structure. In this paper, the degree of nonhomogeneity which is a measure of the separation is obtained using one-dimensional rectangular shaped part compression molding. And the orientation function is defined and measured by the image processing using soft X-rayed photograph and image scammer. Correlation between the degree of nonhomogeneity and the orientation function is discussed.

  • PDF

GMT Sheet에서 섬유함유율 및 섬유배향이 인장강도에 미치는 영향 (Effect of Fiber Content and Fiber Orientation on the Tensile Strength in Glass Mat Reinforced Thermoplastic Sheet)

  • 이정주;이동기;심재기;조선형;김진우
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.186-191
    • /
    • 2004
  • we can say that the increasing range of the value of GMT Sheet's tensile strength in the direction of fiber orientation is getting wider as the fiber content increases. It shows that the value of GMT Sheet's tensile strength in the direction of fiber orientation 90 is similar with the value of pp's intensity when fiber orientation function is J= 0.7, regardless of the fiber content. Tensile strength of GMT Sheet is affected by the fiber orientation distribution more than by the fiber content.

  • PDF

Twisted Yarn 복합재료에서 인장강도에 미치는 섬유배향의 영향 (Effect of Fiber Orientation on the Tensile Strength in Twisted Yarn Composites)

  • 이동기;심재기;김혁;김진우;이정주;이하욱
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.422-425
    • /
    • 2003
  • Investigated whether fiber orientation distribution of twisted yarn composites and the fiber content are 0$^{\circ}$ and 90$^{\circ}$ direction tensile strength and some correlation. Tensile strength of 0$^{\circ}$ directions of twisted yarn composites increased changelessly being proportional the fiber content and fiber orientation function get into anisotropic in isotropic. But, tensile strength ratio by separation of fiber filament of 90$^{\circ}$ directions tensile strength decreased when tensile load is imposed for width direction of reinforcement fiber. 0$^{\circ}$ and 90$^{\circ}$ direction tensile strength ratio value of a twisted yarn composites not receive almost effect of the fiber content of fiber orientation function J = 0.4 lows. Although do, 20 wt% of the fiber content is high about 0$^{\circ}$ and 90$^{\circ}$ direction tensile strength ratio about 1.6~2 than 10 wt% from J = 0.4. Therefore. could know that effect of the fiber content is dominate.

  • PDF

섬유강화 고분자 복합재료의 압축성형에 있어서 분리 ${\cdot}$ 배향에 미치는 금형온도의 영향 (Effect of Mold Temperature on the Separation and the Orientation during Compression Molding of Fiber-Reinforced Polymeric Composites)

  • 이동기;한길영;김이곤
    • 한국해양공학회지
    • /
    • 제9권2호
    • /
    • pp.123-132
    • /
    • 1995
  • During compression molding of fiber-reinforced polymeric composites, microstructural changes such as the fiber-matrix separation and the fiber orientation are occurred by the flow of composite materials. Since the nonhomogeneity and anisotropy of composites are caused by the separation and orientation of fibers. On the other hand, the separation and the orientation of fibers are inseparably related to each other. In this paper the degree of nonhomogeneity which is a measure of the separation is obtained using one-dimensional rectangular shaped part compression molding. And the orientation function is measured by the image processing using soft X-rayed photograph and image scanner. We study effects of the mold temperature on the degree of nonhomogeneity and the orientation function.

  • PDF

THE APPLICATION OF THE ORIENTATION DENSITY FUNCTION TO THE MECHANICS OF FIBROUS ASSEMBLY

  • Lee, D.H.;Lee, J.K.
    • 한국섬유공학회:학술대회논문집
    • /
    • 한국섬유공학회 1988년도 학술발표초록집
    • /
    • pp.35-37
    • /
    • 1988
  • This paper shows the possibility of the application of the orientation density function of fibers to the mechanics of fibrous assembly. As an example, the orientation density function of a single yarn was theoretically derived in consideration of the idealized helical yarn. And the theoretical derivation of the tensile modulus of the fibrous assembly was performed in view of the fiber orientation. Application of this orientation density function to the obtained tensile modulus and to the contraction factor of the yarn was also performed so that the theoretical equations of the tensile modulus and the contraction factor of the yarn were obtained. Close agreement was shown between the theoretical and the existing equations. Consequently it was confirmed that the application of the orientation density function to the mechanics of the fibrous assembly is sufficiently possible.

  • PDF

장섬유강화 고분자 복합재료에서 인장강도에 미치는 섬유배향의 영향 (Effect of Fiber Orientation on the Tensile Strength in Long-Fiber Reinforced Polymeric Composites)

  • 이동기;심재기;한길영;김혁;김진우;이정주
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.55-60
    • /
    • 2003
  • Case that long-fiber reinforced polymeric composites of fiber orientation situation of a direction state is J=1 that is direction of tensile strength of another state appeared highest. And theoretical tensile strength value of long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state appeared similarly with tensile strength value that long-fiber reinforced polymeric composites board of fiber orientation situation of a direction state. Also, than case that efficiency of fiber orientation situation of long-fiber reinforced polymeric composites is J=1 in it is J=0.1 of fiber orientation situation effect of long-fiber reinforced polymeric composites about 60% high appear.

  • PDF