• Title/Summary/Keyword: Fiber Reinforced Polymeric Composites

Search Result 58, Processing Time 0.025 seconds

Calibration of Strain Gauge for Thermal Expansion Coefficientof Fiber Reinforced Composites at Cryogenic Temperature (극저온 환경에서의 섬유강화 복합재료의 열팽창 계수 측정을 위한스트레인 게이지의 보정에 관한 연구)

  • Lee, Won-Oh;Lee, Sang-Bok;Yi, Jin-Woo;Um, Moon-Kwang
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.1-6
    • /
    • 2010
  • Since the fiber reinforced polymeric (FRP) composites are considered in next generation of space transportation systems, reliable thermal expansion properties should be well provided for structural design of composite materials. To obtain accurate mechanical behaviors at a cryogenic temperature, precise strain measurement and calibration must be provided. In this work, apparent strains (or thermal output) of temperature self-compensated strain gages were deliberately investigated for epoxy, CTBN modified epoxy and carbon fabric composite system from room temperature to liquid nitrogen temperature. Also, fourth-order thermal output curves were presented for the further calibration. The results showed that the thermal output is heavily dependent on test materials and a large amount of apparent strains were observed for the polymer resins.

Deformation Analysis for Compression Molding of Polymeric Composites with Random/ Unidirectional Fiber-reinforced laminates (무배향/일방향 섬유강화 적층매트를 갖는 플라스틱 복합판재의 압축변형 해석)

  • 조선형
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1999.03b
    • /
    • pp.188-194
    • /
    • 1999
  • Fiber reinforced composite materials are widely used in automotive industry to produce parts that are large, thin. lightweight. strong and stiff. It is very important to know a charge shape in order to have good products in the compression molding. In particular, the product such as a bumper beam is composed of the random and unidirectional fiber mats. This study analyzes numerically the characteristics of flow fronts such as a bulging phenomenon made by changing viscosity of random mat and unidirectional fiber mat and slip parameters. And it is discussed that the effect of ratio of viscosity A and stack type on mold filling parameters

  • PDF

Interfacial Phenomena of Lignocellulose Fiber/Thermoplastic Polymer Composites (리그노셀룰로오스 섬유/열가소성 고분자 복합재의 계면 현상)

  • Son, Jungil;Yang, Han-Seung;Kim, Hyun-Joong
    • Journal of Adhesion and Interface
    • /
    • v.3 no.4
    • /
    • pp.44-52
    • /
    • 2002
  • Composite materials are created by combining two or more component to achieve desired properties which could not be obtained with the separate components. The use of reinforcing fillers, which can reduce material costs and improve certain properties, is increasing in thermoplastic polymer composites. Currently, various inorganic fillers such as talc, mica, clay, glass fiber and calcium carbonate are being incorporated into thermoplastic composites. Nevertheless, lignocellulose fibers have drawn attention due to their abundant availability, low cost and renewable nature. In recent, interest has grown in composites made from lignocellulose fiber in thermoplastic polymer matrices, particularly for low cost/high volume applications. In addition to high specific properties, lignocellulose fibers offer a number of benefits for lignocellulose fiber/thermoplastic polymer composites. These include low hardness, which minimize abrasion of the equipment during processing, relatively low density, biodegradability, and low cost on a unit-volume basis. In spite of the advantage mentioned above, the use of lignocellulose fibers in thermoplastic polymer composites has been plagued by difficulties in obtaining good dispersion and strong interfacial adhesion because lignocellulose fiber is hydrophilic and thermoplastic polymer is hydrophobic. The application of lignocellulose fibers as reinforcements in composite materials requires, just as for glass-fiber reinforced composites, a strong adhesion between the fiber and the matrix regardless of whether a traditional polymer matrix, a biodegradable polymer matrix or cement is used. Further this article gives a survey about physical and chemical treatment methods which improve the fiber matrix adhesion, their results and effects on the physical properties of composites. Coupling agents in lignocellulose fiber and polymer composites play a very important role in improving the compatibility and adhesion between polar lignocellulose fiber and non-polar polymeric matrices. In this article, we also review various kinds of coupling agent and interfacial mechanism or phenomena between lignocellulose fiber and thermoplastic polymer.

  • PDF

Interfacial Effects in Filled and Reinforced Polymeric Composites

  • Xie, Hengkun
    • Electrical & Electronic Materials
    • /
    • v.11 no.10
    • /
    • pp.24-31
    • /
    • 1998
  • Interfacial effect in polymetric composites have been studied extensively. This report deals mainly with the effects of interfacial space charge and interface structure. A model for the dynamic process of interfacial space charge accumulation is proposed. The new model might interpret some interface phenomena which is difficult to be explained in terms of traditional Maxwell-Wagner theory. An interface structure is also presented, by which the importance of surface treatment of glass Fiber for improving the properties of FRP could be well understood.

  • PDF

Behavior of Fiber-Reinforced Smart Soft Composite Actuators According to Material Composition (섬유 강화 지능형 연성 복합재 구동기의 재료구성에 따른 거동특성 평가)

  • Han, Min-Woo;Kim, Hyung-Il;Song, Sung-Hyuk;Ahn, Sung-Hoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.81-85
    • /
    • 2017
  • Fiber-reinforced polymer composites, which are made by combining a continuous fiber that acts as reinforcement and a homogeneous polymeric material that acts as a host, are engineering materials with high strength and stiffness and a lightweight structure. In this study, a shape memory alloy(SMA) reinforced composite actuator is presented. This actuator is used to generate large deformations in single lightweight structures and can be used in applications requiring a high degree of adaptability to various external conditions. The proposed actuator consists of numerous individual laminas of the glass-fiber fabric that are embedded in a polymeric matrix. To characterize its deformation behavior, the composition of the actuator was changed by changing the matrix material and the number of the glass-fiber fabric layers. In addition, current of various magnitudes were applied to each actuator to study the effect of the heating of SMA wires on applying current.

Interfacial Properties of Electrodeposited Carbon Fibers Reinforced Epoxy Composites Using Fragmentation Technique and Acoustic Emission

  • Yeong-Min Kim;Joung-Man Park;Ki-Won Kim;Dong-Jin Yoon
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 1999.11a
    • /
    • pp.28-31
    • /
    • 1999
  • Carbon fiber/epoxy composites using electrodeposited monomeric and polymeric coupling agents were compared with the dipping and the untreated cases. Treating conditions such as time, concentration and temperature were optimized. Four-fibers embedded micro-composites were prepared for fragmentation test. Interfacial properties of four-fiber composites with different surface treatments were investigated with simultaneous acoustic emission (AE) monitoring. The microfailure mechanisms occurring from fiber break, matrix and interlayer crackings were examined by AE parameters and an optical microscope. It was found that interfacial shear strength (IFSS) of electrodeposited carbon fibers was much higher than the other cases under dry and wet conditions. Well separated and different-shaped AE groups occurs for the untreated and ED treated case, respectively.

  • PDF

Coupled Analysis with Digimat for Realizing the Mechanical Behavior of Glass Fiber Reinforced Plastics (유리섬유 강화 플라스틱의 역학적 거동 구현을 위한 Digimat와의 연성해석 연구)

  • Kim, Young-Man;Kim, Yong-Hwan
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.32 no.6
    • /
    • pp.349-357
    • /
    • 2019
  • Finite element method (FEM) is utilized in the development of products to realistically analyze and predict the mechanical behavior of materials in various fields. However, the approach based on the numerical analysis of glass fiber reinforced plastic (GFRP) composites, for which the fiber orientation and strain rate affect the mechanical properties, has proven to be challenging. The purpose of this study is to define and evaluate the mechanical properties of glass fiber reinforced plastic composites using the numerical analysis models of Digimat, a linear, nonlinear multi-scale modeling program for various composite materials such as polymers, rubber, metal, etc. In addition, the aim is to predict the behavior of realistic polymeric composites. In this regard, the tensile properties according to the fiber orientation and strain rate of polybutylene terephthalate (PBT) with short fiber weight fractions of 30wt% among various polymers were investigated using references. Information on the fiber orientation was calculated based on injection analysis using Moldflow software, and was utilized in the finite element model for tensile specimens via a mapping process. LS-Dyna, an explicit commercial finite element code, was used for coupled analysis using Digimat to study the tensile properties of composites according to the fiber orientation and strain rate of glass fibers. In addition, the drawbacks and advantages of LS-DYNA's various anisotropic material models were compared and evaluated for the analysis of glass fiber reinforced plastic composites.

Effective Longitudinal Shear Modulus of Polymeric Composite Using Iosipescu Shear Test (Iosipescu Shear Test를 이용한 고분자 복합재료의 종방향 전단계수 연구)

  • Jeong, Tae-Heon;Kwon, Yong-Su;Lee, You-Tae;Lee, Dong-Joo
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.3 no.1
    • /
    • pp.61-67
    • /
    • 2000
  • Effective shear modulus of continuous fiber reinforced polymeric composites is measured using a modified Iosipescu Shear Test(IST) and compared with data obtained by finite element analyses that a concept of unit cell is. It is found that the numerical results of the longitudinal shear modulus give a good agreement with experimental data at lower fiber volume fraction. In this paper, both the distance and stress transfer between the fibers are discussed as the major factors.

  • PDF

Nondestructive Evaluation of the Turbine Blade of Wind Energy By Using T-Ray (T-ray를 이용한 풍력터빈 브레이드 비파괴결함평가)

  • Im, Kwang-Hee;Jeong, Jong-An;Hsu, David K.;Lee, Kil-Sung
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.1
    • /
    • pp.102-108
    • /
    • 2012
  • A study of terahertz waves (T-ray) was made for the nondestructive evaluation of FRP (Fiber reinforced plastics) composite materials. The to-be-used systems were time domain spectroscopy (TDS) and continuous wave (CW). The composite materials investigated include both turbine blades of wind energy (non-conducting polymeric composites) and conducting carbon fiber composites. Terahertz signals in the TDS mode resembles that of ultrasound; however, unlike ultrasound, a terahertz pulse was not able to detect a material with conductivity. This was demonstrated in CFRP (Carbon fiber reinforced plastics) laminates. Refractive index (n) was defined as one of mechanical properties; so a method was solved in order solve the "n" in the material with the cut parts of the turbine blades of wind energy. The defects and anomalies investigated by terahertz radiation were foreign material inclusions and simulated disband. Especially, it is found that the T-ray went through the turbine blade with greater thickness (about 90mm).

Tailoring and Control of The Micro (Nano) Structure of Functional CMSs and MMCs

  • Colomban
    • The Korean Journal of Ceramics
    • /
    • v.5 no.1
    • /
    • pp.55-72
    • /
    • 1999
  • A cheallenge in the aerospace field is to design new composites satisfying specific and sometimes conflicting properties. The key steps are ⅰ)the understanding and the control of the reaction between the reinforcement and the embedding matrix, ⅱ) the achievement of a coherent and robust matrix. The problems encountered to prepare particulate, 1D, 2D and 3D reinforced composites using polymeric are discussed. Emphasis is given to the control of the micro/nanostructure using Raman microspectrometry and depth-sensing microindentation, in order to get information on the micromechanics and fiber structure simultaneously, within ceramic (CMC's) and metal matrix (MMC's) composites.

  • PDF