• Title/Summary/Keyword: Fiber angle

Search Result 678, Processing Time 0.033 seconds

Stacking Sequence Effects on Indentation Damage Behaviors of Fiber Metal Laminate (섬유의 적층 각도에 따른 섬유 금속 적층판의 압입 손상 거동)

  • Nam, H.W.;Kim, Y.H.;Jung, S.W.;Han, K.S.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.204-209
    • /
    • 2001
  • In this research, the effects of fiber stacking sequence on damage behaviors of FML(Fiber Metal Laminates) subject to indentation loading. SOP (Singly Oriented Ply) FML and angle ply FML were fabricated to study fiber orientation effects and angle ply effects. FML were fabricated by using 1050 aluminum laminate and carbon/epoxy prepreg. To increase adhesive bonding strength, Al laminate was etched using FPL methods. The static indentation test were conducted by using UTM(5ton, Shimadzu) under the 2side clamped conditions. During the tests, load and displacement curve and crack initiation and propagation behaviors were investigated. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. However, the macro-crack of angle ply FML was initiated by fiber breakage of lower ply because angle plies in Angle ply FML prevents the crack growth and consolidation. The Angle ply FML has a critical cross-angle which prevent crack growth and consolidation. Damage behavior of Angle ply FML is changed around the critical cross-angle.

  • PDF

Stacking Sequence Effects on Indentation Damage Behaviors of Fiber Metal Laminate (섬유의 적층 각도에 따른 섬유 금속 적층판의 압입 손상 거동)

  • Han, Gyeong-Seop;Nam, Hyeon-Uk;Jeong, Seong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.960-968
    • /
    • 2002
  • In this research, the effects of fiber stacking sequence on damage behaviors of FML(Fiber Metal Laminates) subject to indentation loading. SOP (Singly Oriented Ply) FML and angle ply FML were fabricated to study fiber orientation effects and angle ply effects. FML were fabricated by using 1050 aluminum laminate and carbon/epoxy prepreg. To increase adhesive bonding strength, Al laminate was etched using FPL methods. The static indentation test were conducted by using UTM under the 2side clamped conditions. During the tests, load and displacement curve and crack initiation and propagation behaviors were investigated. As fiber orientation angle increases, the crack initiation load of SOP FML increases because the stiffness induced by fiber orientation is increased. The penetration load of SOP FML is influenced by the deformation tendency and boundary conditions. However, the macro-crack of angle ply FML was initiated by fiber breakage of lower ply because angle plies in Angle ply FML prevents the crack growth and consolidation. The Angle ply FML has a critical cross-angle which prevent crack growth and consolidation. Damage behavior of Angle ply FML is changed around the critical cross-angle.

Effect of Fiber Orientation Angle and Property of Metal Laminate on Impact Behaviors of Fiber Metal Laminates (섬유의 적층각과 금속판의 특성에 따른 섬유 금속 적층판의 충격 손상 거동)

  • Nam, Hyun-Wook;Jung, Sung-Wook;Han, Kyung-Seop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.372-380
    • /
    • 2003
  • Impact tests were conducted to study the effect of angle ply and metal laminate on impact damage characteristics of Fiber Metal laminates (FML). Impact tests were conducted using drop weight impact machine and damage behavior were analyzed by comparing with load-displacement curve and surface observation and microscopic observation of cross sections. The effect of angle ply on impact characteristics of FML are influenced by property of metal laminate. i.e., when the metal laminate is not enough to strong to prevent fiber debonding, Angle ply FML is superior to singly oriented ply (SOP) FML because angle ply enhance the stiffness by fiber supports and prevent (rack propagation. However, when the metal laminate is enough to strong to prevent fiber debonding, SOP FML is superior to Angle ply FML because the fiber of lower ply in Angle ply FML are more stressed than that of SOP FML.

Interfacial Sensing and Evaluation of Carbon and SiC Fibers/Epoxy Composites with Different Embedding Angle using Electro-Micromechanical Technique (Electro-Micromechanical Technique을 이용한 각의 변화에 따른 Carbon과 SiC Fiber/Epoxy Composites의 계면감지능 및 평가)

  • Lee, Sang-Il;Kong, Jin-Woo;Park, Joung-Man
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.199-202
    • /
    • 2002
  • Interfacial properties and electrical sensing for fiber fracture in carbon and SiC fibers/epoxy composites were investigated by the electrical resistance measurement and fragmentation test. As fiber-embedded angle increased, interfacial shear strength (IFSS) of two-type fiber composites decreased, and the elapsed time was long to the infinity in electrical resistivity. The initial slope of electrical resistivity increased rapidly to the infinity at higher angle, whereas electrical resistivity increased gradually at small angle. Furthermore, both fiber composites with small embedded angle showed a fully-developed stress whitening pattern, whereas both composites with higher embedded angle exhibited a less developed stress whitening pattern. As embedded angle decreased, the gap between the fragments increased and the debonded length was wider for both fiber composites. Electro-micromechanical technique can be a feasible nondestructive evaluation to measure interfacial sensing properties depending on the fiber-embedded angle in conductive fiber reinforced composites.

  • PDF

Feasibility study on the contact angle measurement by laser beam projection

  • Ahn, Seon-Hoon;Kim, Seong-Hun;Shin, Kyung-In;IM, Seung-Soon
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.103-103
    • /
    • 2003
  • A newly developed contact angle measurement instrument by laser beam projection allows for rapid and direct determination of contact angles. From the result of comparative experiment and questionnaire, the laser contact angle.

  • PDF

Deltoid Middle Fiber of the Isometric Contraction According to Elastic Band and Dumbbell on Various Shoulder Abduction Angle (탄력밴드와 아령에 의한 저항이 다양한 어깨관절 외전 각도에서 중간 어깨 세모근의 등척성 수축에 미치는 영향)

  • Park, Min-Chull;Lee, Sang-Yeol
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.11 no.2
    • /
    • pp.71-76
    • /
    • 2016
  • PURPOSE: The purpose of this study was to compare isometric contraction of deltoid middle fiber between elastic band and light dumbbell on various shoulder abduction angle. And this study intends to examine the compare with isometric contraction on deltoid middle fiber in various abduction angle of shoulder joint. METHODS: The participants of this study were Korean healthy adult in their 20s (n=60). The 8 channel surface electromyography was used to measure activity of the deltoid middle fiber at isomeric contraction on various abduction angle: $0^{\circ}$, $30^{\circ}$, $60^{\circ}$, $90^{\circ}$, $120^{\circ}$ of shoulder joint using elastic band: red color Theraband and dumbbell: 2kg. The data used in the analysis of the present study was the root mean square. RESULTS: The deltoid middle fiber activation was not significantly different between elastic band and dumbbell at each abduction angle. The deltoid middle fiber activation significantly increased as more to increased shoulder abduction angle in elastic band and dumbbell. CONCLUSION: The elastic band and dumbbell was to provide the similarly load to the deltoid middle fiber isometric contraction on all of the shoulder abduction angle. The deltoid middle fiber activation increased as more to increased shoulder abduction angle in elastic band and dumbbell. These results may be an important reference in development of exercise on shoulder joint.

Accuracy of Intersection Counting Method in Measurement of Fiber Orientation Angle Distribution Using Image Processing (화상처리에 의한 섬유배향각 분포측정에 있어서 교차점합산법의 정밀도)

  • 이상동;박준식;이동기;한길영;김이곤
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.97-105
    • /
    • 1998
  • The fiber oriented condition inside fiber reinforced composite material is a basic factor of mechanical properties of composite materials. It is very important to meausure the fiber orientation angle for the determination of molding conditions, mechanical characteristics, and the design of composite materials. In the work, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine the accuracy of intersection counting method. The fiber orientation function measured by intersection counting method using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the scanning line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.

  • PDF

Muscle Fiber Characteristics on Chop Surface of Pork Loin (M. longissimus thoracis et lumborum) Associated with Muscle Fiber Pennation Angle and Their Relationships with Pork Loin Quality

  • Song, Sumin;Cheng, Huilin;Jung, Eun-Young;Joo, Seon-Tea;Kim, Gap-Don
    • Food Science of Animal Resources
    • /
    • v.40 no.6
    • /
    • pp.957-968
    • /
    • 2020
  • The influence of muscle architecture on muscle fiber characteristics and meat quality has not been fully elucidated. In the present study, muscle fiber characteristics on the chop surface of pork loin (M. longissimus thoracis et lumborum, LTL), pennation angle degree, and meat quality were evaluated to understand the pork LTL architecture and its relationship with the loin chop quality. Muscle fiber pennation degree ranged from 51.33° to 69.00°, resulting in an ellipse-shaped muscle fiber on the surface of pork loin chop. The cross-sectional area (CSA) on the sections cut vertical to the muscle length (M-Vertical) was considerably larger (p<0.05) than that on the sections cut vertical to the muscle fiber orientation (F-Vertical) regardless of the fiber type. Pennation angle is positively correlated with CSAs of F-Vertical (p<0.05) and with Warner-Bratzler shear force (r=0.53, p<0.01). Besides the shear force, lightness and pH were positively correlated with the fiber composition and CSA of IIX fiber (p<0.05); however, the redness, yellowness, drip loss, and cooking loss were not correlated with the pennation angle and muscle fiber characteristics on the chop surface (p>0.05). These observations might help us in better understanding pork loin architecture and the relationship between the pennation angle, muscle fiber characteristics, and meat quality of pork loin chop.

Fiber Bridging Model Considering Probability Density Function of Fiber Inclined Angle in Engineered Cementitious Composites (보강 섬유의 배향각에 대한 확률밀도함수를 고려한 ECC내의 섬유 가교 모델)

  • Kang, Cheol-Ho;Lee, Bang-Yeun;Park, Seung-Bum;Kim, Yun-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.6
    • /
    • pp.587-596
    • /
    • 2009
  • The fiber bridging model is the crucial factor to predict or analyze the tensile behavior of fiber reinforced cementitious composites. This paper presents the fiber bridging constitutive law considering the distribution of fiber inclined angle and the number of fibers in engineered cementitious composites. The distribution of fiber inclined angle and the number of fibers are measured and analyzed by the image processing technique. The fiber distribution are considerably different from those obtained by assuming two- or three-dimensional random distributions for the fiber inclined angle. The simulation of the uniaxial tension behavior was performed considering the distribution of fiber inclined angle and number of fibers measured by the sectional image analysis. The simulation results exhibit multiple cracking and strain hardening behavior that correspond well with test results.

Interfacial Damage Sensing and Evaluation of Carbon and SiC Fibers/Epoxy Composites with Fiber-Embedded Angle using Electro-Micromechanical Technique (Electro-Micromechanical시험법을 이용한 섬유 함침 각에 따른 탄소와 SiC 섬유강화 에폭시 복합재료의 계면 손상 감지능 및 평가)

  • Joung-Man Park;Sang-Il Lee;Jin-Woo Kong;Tae-Wook Kim
    • Composites Research
    • /
    • v.16 no.2
    • /
    • pp.68-73
    • /
    • 2003
  • Interfacial properties and electrical sensing fer fiber fracture in carbon and SiC fibers/epoxy composites were investigated by the electrical resistance measurement and fragmentation test. As fiber-embedded angle increased, the interfacial shear strength (IFSS) of two-type fiber composites decreased, and the elapsed time takes long until the infinity in electrical resistivity. The initial slope of electrical resistivity increased rapidly to the infinity at higher angle, whereas electrical resistivity increased gradually at small angle. Furthermore, both fiber composites with small embedded angle showed a fully-developed stress whitening pattern, whereas both composites with higher embedded angle exhibited a less developed stress whitening pattern. As embedded angle decreased, the gap between the fragments increased and the debonded length was wider for both fiber composites. Electro-micromechanical technique could be a feasible nondestructive evaluation to measure interfacial sensing properties depending on the fiber-embedded angle in conductive fiber reinforced composites.