• Title/Summary/Keyword: Fiber confocal microscopy

Search Result 29, Processing Time 0.037 seconds

Analysis of External Fibrillation of Fiber by Confocal Reflection Microscopy (공초점반사현미경법을 이용한 섬유의 외부소섬유화 분석)

  • Kwon, Ohkyung
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.46 no.2
    • /
    • pp.35-45
    • /
    • 2014
  • Confocal Reflection Microscopy (CRM) was applied to investigate external fibrillation of different types of fibers such as Kajaani reference fiber, Whatman filter fiber, thermomechanical pulp (TMP), and recycled TMP fiber. It was confirmed that the CRM images are created from surface structures of the fiber cell wall. Confocal Laser Scanning Microscopy (CLSM) captured overall shape of the fiber, but minute details of the surface of the fiber were missed. CRM captured the minute details of the fiber surface. From the CRM and CLSM images, it was observed that the CRM images mainly appeared on the fiber surfaces. External fibrillation of the fiber occurs at the fiber surface, not inside the cell wall. Thus, it was concluded that investigation on the external fibrillation of the fiber was possible by utilizing CRM images. A direct qualtitative and quantitative method for analysis of external fibrillation of fiber was demonstrated by utilizing surface area to volume ratio, volume fraction, and roughness calculated from 3-dimensional images reconstructed from stacks of CRM images from the different fibers.

Investigation of Layered Structure of Fiber Cell Wall in Korean Red Pine by Confocal Reflection Microscopy

  • Kwon, Ohkyung
    • Applied Microscopy
    • /
    • v.44 no.2
    • /
    • pp.61-67
    • /
    • 2014
  • Layered structures of fiber cell wall of Korean red pine (Pinus densiflora) were investigated by confocal reflection microscopy (CRM). CRM micrographs revealed detailed structures of the fiber cell wall such as S1, S2, and S3 layers as well as transition layers (S12 and S23 layers), which are present between the S1, S2, and S3 layers. Microfibril angle (MFA) measurement was possible for the S2 and S3 layer in the cell wall. The experimental results suggest that CRM is a versatile microscopic method for investigation of layered structures and MFA measurement in individual sub layer of the tracheid cell wall.

Confocal Microscopy Measurement of the Fiber Orientation in Short Fiber Reinforced Plastics

  • Lee, Kwang Seok;Lee, Seok Won;Youn, Jae Ryoun;Kang, Tae Jin;Chung, Kwansoo
    • Fibers and Polymers
    • /
    • v.2 no.1
    • /
    • pp.163-172
    • /
    • 2001
  • To determine three-dimensional fiber orientation states in injection-molded short fiber composites a CLSM (Confocal Laser Scanning Microscope) is used. Since the CLSM optically sections the composites, more than two cross-sections either on or below the surface of the composite can be obtained. Three dimensional fiber orientation states can be determined with geometric parameters of fibers on two parallel cross-sections. For experiment, carbon fiber reinforced polystyrene is examined by the CLSM. Geometric parameters of fibers are measured by image analysis. In order to compactly describe fiber orientation states, orientation tensors are used. Orientation tensors are determined at different positions of the prepared specimen. Three dimensional orientation states are obtained without the difficulty in determining the out-of-plane angles by utilizing images on two parallel planes acquired by the CLSM. Orientation states are different at different positions and show the shell-core structure along the thickness of the specimen.

  • PDF

STUDY OF INCIPIENT ENAMEL CARIES USING A DIGITAL ILLUMINATION FIBER-OPTIC TRANSILLUMINATION AND CONFOCAL LASER SCANNING MICROSCOPE (Digital Imaging Fiber-Optic Trans-Illuminational과 Confocal Laser Scanning Microscope를 이용한 초기 법랑질 우식증 연구)

  • Kim, Jae-Tae;Kim, Seung-Oh;Kim, Jong-Soo
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2006
  • The purpose of this study were to evaluate the efficacy of the newly developed Digital Imaging Fiber-Optic Trans-illumination (DIFOTI) system in detecting carious lesions in vivo as gold standard with confocal laser scanning microscopy and compared the efficacy of traditional radiography and DIFOTI system in vito as gold standard with confocal laser scanning microscopy, too. For the in vivo study, the subject pool consisted of 23 grammar school age patients just prior to entering the mixed dentition phase Each patient was given a DIFOTI examination of the anterior and posterior teeth. During $6{\sim}8$ months, the naturally expire primary teeth were collected and the efficacy of DIFOTI system was compared with confocal laser scanning microscopy. For in vitro study, 40 primary teeth were collected and decalcified by Carbopol decalcification solution for 1, 2, 4 and 8 days. Every experiment period, all teeth were DIFOTI examined and sectioned to take an image of confocal laser scanning microscopy Sensitivity and specificity were calculated from the result of DIFOTI examine and confocal laser scanning microscopy analysis. The results are as follows : 1. From the in vivo study, the sensitivity of DIFOTI examine was 0. 61 and specificity was 0.63. 2. From the in vivo study, the sensitivity of DIFOTI examine was 0.71 and specificity was 0.75.

  • PDF

Measurement of the Internal Structure of an Optical Waveguide Embedded in a Flexible Optical Circuit Board by Enhancing the Signal Contrast of a Confocal Microscope

  • Lee, Won-Jun;Kim, Dae-Chan;O, Beom-Hoan;Park, Se-Geun;Lee, El-Hang;Lee, Seung-Gol
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.9-14
    • /
    • 2011
  • In this study, the internal structure of an optical waveguide embedded in a flexible optical circuit board is observed with a confocal microscope. In order to increase the light reflection from an internal material interface with a very small index difference, and thus enhance the signal contrast, a theta microscopy scheme has been integrated into a conventional confocal microscope, and a high NA oil-immersion lens has been used. The interface reflectivity is increased from roughly 0.0015% to 0.025% by the proposed method, and the internal structure can thus be successfully measured.

Visualization of Epidermis and Dermal Cells in ex vivo Human Skin Using the Confocal and Two-photon Microscopy

  • Choi, Sang-Hoon;Kim, Wi-Han;Lee, Yong-Joong;Lee, Ho;Lee, Weon-Ju;Yang, Jung-Dug;Shim, Jong-Won;Kim, Jin-Woong
    • Journal of the Optical Society of Korea
    • /
    • v.15 no.1
    • /
    • pp.61-67
    • /
    • 2011
  • The confocal laser scanning microscopy and two-photon microscopy was implemented based on a single laser source and an objective lens. We imaged and compared the morphology of identical sites of ex vivo human skin using both microscopes. The back-scattering emission from the sample provided the contrast for the confocal microscopy. The intrinsic autofluorescence and the second harmonic generation were used as the luminescence source for the two-photon microscopy. The wavelength of the Ti:Sapphire laser was tuned at 710 nm, which corresponds to the excitation peak of NADH and FAD in skin tissue. The various cell layers in the epidermis and the papillary dermis were clearly distinguished by both imaging modalities. The two-photon microscopy more clearly visualized the intercellular region and the nucleus of the cell compared to the confocal microscopy. The fibrous structures in the dermis were more clearly resolved by the confocal microscopy. Numerous cells in papillary dermal layer, as deep as $100\;{\mu}m$, were observed in both CLSM and two-photon microscopy. While most previous studies focused on fibrous structure imaging (collagen and elastin fiber) in the dermis, we demonstrated that the combined imaging with the CLSM and two-photon microscopy can be applied for the non-invasive study of the population, distribution and metabolism of papillary dermal cells in skin.

Fiber Orientation in Injection-Molded Short Fiber Composites with a Confocal Laser Scanning Microscope and Numerical Simulation (공초점 레이저 주사 현미경을 이용한 단섬유 복합재료 사출 성형물 내의 섬유 배열 측정 및 수치모사)

  • Lee, Kwang-Seok;Le, Seok-Won;Youn, Jae-Ryoun
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.05a
    • /
    • pp.201-204
    • /
    • 2001
  • A Confocal Laser Scanning Microscope (CLSM) is applied to determine three-dimensional fiber orientation states in injection-molded short fiber composites. Since the CLSM optically sections the composites, more than two planes either on or below the surface of composites can be obtained. Therefore, three dimensional fiber orientation states are determined without destruction. To predict the orientation states, velocity and temperature fields are calculated by using a hybrid FEM/FDM method. The change of orientation state during packing stage is also considered by employing a compressible Hele-Shaw model. The predicted orientation states show good agreement with measured ones. However, some differences are found at the end of cavity. They may result from other effects, which are not considered in the numerical analysis.

  • PDF

Fiber Optics for Multilayered Optical Memory

  • Kawata, Yoshimasa;Tsuji, Masatoshi;Inami, Wataru
    • Transactions of the Society of Information Storage Systems
    • /
    • v.7 no.2
    • /
    • pp.53-59
    • /
    • 2011
  • We have developed a compact and high-power mode-locked fiber laser for multilayered optical memory. Fiber lasers have the potential to be compact and stable light sources that can replace bulk solid-state lasers. To generate high-power pulses, we used stretched-pulse mode locking. The average power and pulse width of the output pulse from the fiber laser that we developed were 109 mW and 2.1 ps, respectively. The dispersion of the output pulse was compensated with an external single-mode fiber of 2.5 m length. The pulse was compressed from 2.1 ps to 93 fs by dispersion compensation. The fiber laser we have developed is possible to use as a light source of multilayered optical memory. We also present a fiber confocal microscope as an alignment-free readout system of multilayered optical memories. The fiber confocal microscope does not require fine pinhole position alignment because the fiber core is used as the point light source and the pinhole, and both of which are always located at the conjugated point. The configuration reduces the required accuracy of pinhole position alignment. With these techniques we can present an all-fiber recording and readout system for multilayered memories.