• Title/Summary/Keyword: Fiberoptic sensor

Search Result 7, Processing Time 0.025 seconds

A Fiberoptic Temperature Sensor Using Low-Coherence Light Source (가간섭성이 낮은 광원을 이용한 광섬유 온도 센서)

  • Kim, Gwang-Su;Lee, Hong-Sik;Im, Geun-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.12
    • /
    • pp.691-697
    • /
    • 2000
  • A fiberoptic sensor using a low-coherence SLD as a light source has been studied. The sensor system employing an intrinsic fiber Fabry-Peort interferometer as a sensing tip and a fiber Mach-Zehnder interferometer as a processing one, overcomes the ambiguous reading caused by the highly periodic natrue of conventional high-precision interferometric sensors and provides unambiguous identification of the desired phase among several candidates on the transfer function of an interferometric signal. A tentative application to the temperature sensor shows the potential that the fiberoptic sensor has a side-dynamic range of $0-900^{\circ}C$ as well as reasonable resolution higher than $0.1^{\circ}C$ without ambiguity. Due to the inherent property of the optical fiber itself and the intrinsic fiber Fabry-Perot interferometer, the proposed fiberoptic sensor will give obvious benefits when it is applied to harsh environments to monitor some physical parameters such as temperature, strain, pressure and vibration.

  • PDF

Fiber Fabry-Perot Sensor using SLD Light Source (SLD 광원을 이용한 광섬유 패브리페로 센서)

  • Kim, Kwang-Soo;Lee, Byong-Yoon;Lee, Hong-Sik;Rim, Geun-Hie
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2186-2188
    • /
    • 2000
  • A fiberoptic sensor using an SLD as a light source has been studied. The sensor system employs an intrinsic fiber Fabry-Perot interferometer as a sensing tip and a fiber Mach-Zehnder interferometer as a processing one. A free loading test for temperature application shows that the fiberoptic sensor has a wide-dynamic range as well as high resolution. Due to the inherent property of the optical fiber itself and the intrinsic Fabry-Perot interferometer. the fiberoptic sensor gives obvious benefits when it is applied to harsh environments to monitor some physical parameters such as temperature, strain, pressure and vibration.

  • PDF

Voltage Sensor using Fiberoptic Fabry-Perot Interferometry (패브리페로 간섭계를 이용한 광섬유 전압센서의 구현)

  • Kim, J.I.;Jeon, J.H.;Kim, K.S.
    • Proceedings of the KIEE Conference
    • /
    • 2002.11a
    • /
    • pp.236-238
    • /
    • 2002
  • A noble fiberoptic voltage sensor system utilizing an interferometric transducer has been introduced for high voltage measurement. The sensor system employs a fiberoptic Fabry-Perot interferometric strain sensor to convert voltage to displacement in an auxiliary movable electrode. The operating mechanism is based on the fact that the electrostatic force acting on the electrode system by the applied voltage results in strain variation on the Fabry-Perot interferometry. The experiment results show that the proposed voltage sensor has the potential to be extended to very high voltage system with appropriate auxiliary electrodes.

  • PDF

Image Detecting System for Pinhole with Photoelectric Sensors (광전(光電)센서를 활용한 핀홀의 영상검출시스템)

  • Kang, Min-Goo;Zo, Moon-Shin;Jeon, Jong-Suh
    • Journal of Internet Computing and Services
    • /
    • v.13 no.3
    • /
    • pp.17-22
    • /
    • 2012
  • In this paper, a photoelectric image detection system is proposed using an APD(Avalanche Photodiode) sensor, a LED illuminator, and fiberoptic waveguides. This proposed pinhole detection system can detect the pinholes of 100 micron with the speed rate of 1,000mpm(meter per minute). And detecting performance of image system is improved by the SQL based DB analysis of classifying pinhole's detected location and size using image detection algorithms.

Unambiguous Fiber Fabry-Perot Temperature Sensor by an Additional Partial Mirror (보조 반사체를 이용한 광섬유 페브리페로 간섭계형 온도센서의 성능향상)

  • Kim, Gwang-Su;Lee, Hong-Sik
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.7
    • /
    • pp.418-423
    • /
    • 2000
  • The fiber Fabry-Perot interferometric(FFPI) sensor is well known in the field of industrial diagnosis due to its outstanding properties such as tiny size, simple and rugged structure, and easy interrogation. As other fiber interferometric sensors, it also suffers from ambiguous output caused by highly periodic feature in its optical transfer function. In most cases, the ambiguity leads to relatively short dynamic operating range and long processing time during power-on reset, which limits its application to some specific fields requiring very high resolution. In this paper a method based on double sensing scheme was proposed to overcome the above difficulty. By employing a fringe selection auxiliary FFPI sensor the original FFPI sensor can identify its true position on the phase domain. The performance test with 10mm FFPI sensor and a thermocouple temperature sensor for reference shows wide dynamic range 0-900$\ell$ keeping a reasonable resolution of 0.1$\ell$ over the entire range.

  • PDF

Interferometric fiberoptic sensor signal processor for smart structures (지능형 구조물을 위한 간섭형 광섬유 센서 신호처리기)

  • 홍영준;예윤해
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.588-593
    • /
    • 2003
  • A signal processor for interferometeric fiber optic sensors, which measure dynamic quantities of frequency up to 1 KHz with high sensitivity, is developed. It is a high-speed version of the all-digital phase tracking (ADPT) processor that was used to measure static or slowly-varying quantities. The processor was applied to a fiber optic Mach-Zehnder interferometer to evaluate the performance. The measured total harmonic distortion was near to -50 ㏈, which is the theoretical limit or the ADPT signal processing.

Detection of White Light Interference Peak Position utilizing Analog Signal Processing (아날로그 신호처리를 이용한 백색광 간섭 피크의 검출)

  • Yeh, Yun-Hae;Lee, Jong-Kwon
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.319-325
    • /
    • 2005
  • A signal processing method for white light interferometry (WLI), which performs a series of analog signal processing steps to locate the central interference fringe position at high speed: is developed and applied to a WLI temperature sensor system. We found that the new method has random walk of $0.019^{\circ}C/\sqrt{Hz}$ with good linearity. However, the temperature change in the path-matching interferometer results in drift of the measured sensor output. The temperature dependence of drift in the WLI temperature sensor system, was calculated to be $1.42{\mu}m/^{\circ}C$. It is also found that the relationship between the peak spacing in the interferogram and the spacing measured by the method can be nonlinear when the fringe spacing is comparable to the coherence length of the source.