• Title/Summary/Keyword: Filler

Search Result 1,980, Processing Time 0.04 seconds

Forehead reconstruction using modified double-opposing rotation-advancement flaps for severe skin necrosis after filler injection

  • Kim, Jinwoo;Hwang, Woosuk
    • Archives of Craniofacial Surgery
    • /
    • v.19 no.1
    • /
    • pp.64-67
    • /
    • 2018
  • Varying degrees of complications can occur after hyaluronic acid filler injections. Tissue necrosis due to interruption of the vascular supply is an early complication that can be severe. If the site of tissue necrosis due to the filler injection is the forehead, successfully reconstructing the region without distorting the key landmarks is challenging. We describe the case of a 50-year-old man who experienced widespread forehead skin necrosis after hyaluronic acid filler injection in the glabellar area. We successfully covered the forehead area with a $3{\times}4-cm^2$ midline necrotic tissue using the modified double-opposing rotation-advancement flap method. Although modified double-opposing rotation-advancement flap closure has the disadvantage of leaving a longer scar compared to conventional double-opposing rotation-advancement flap closure, the additional incision line made along the superior border of the eyebrow aids in camouflaging the scar and decreases eyebrow distortion. Therefore, it is believed that the modified double-opposing rotation-advancement flap technique is an excellent tool for providing adequate soft tissue coverage and minimal free margin distortion when reconstructing widespread skin necrosis in the central mid-lower forehead that can occur after filler injection in the glabellar area.

Thermal Characteristic of the Tubular Single tap Adhesively Bonded Joint bonded with filler containing epoxy adhesive (충전재가 함유된 단일겹치기 접착 조인트의 열적 특성에 관한 연구)

  • Kim, Jin-Kook;Lee, Dai-Gil
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.370-376
    • /
    • 2001
  • When an adhesive joint is exposed to high environmental temperature, the tensile load capability of the adhesive joint decreases because the elastic modulus and failure strength of structural adhesive decrease. The thermo-mechanical properties of structural adhesive can be improved by addition of fillers to the adhesive. In this paper, the elastic modulus and failure strength of adhesives as well as the tensile load capability of tubular single lap adhesive joints were experimentally and theoretically investigated with respect to the volume fraction of filler (alumina) and the environmental temperature. Also the tensile modulus of the fille containing epoxy adhesive was predicted using a new equation which considers filler shape, filler content and environmental temperature. The tensile load capability of the adhesive joint was predicted by using the effective strain obtained from the finite element analysis and a new failure model, from which the relation between the bonding length and the crack length was developed with respect to the volume fraction of filler.

  • PDF

Influence of Brazing Temperature on Strength and Structure of SUS304 Stainless Steel Brazed System with BNi-2 Filler Metal : Fundamental Study on Brazeability with Ni-Based Filler Metal(II) (BNi-2계 삽입금속에 의한 SUS304 스테인리스강 접합체의 강도와 조직에 미치는 브레이징 온도의 영향 : Ni기 삽입금속에 의한 브레이징 접합성의 기초적 검토(II))

  • Lee, Yong-Won;Kim, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.179-183
    • /
    • 2007
  • A plate heat exchanger (PHE) normally uses vacuum brazing technology for connecting plates and fins. However, the reliability of high temperature brazing, especially with nickel-based filler metals containing boron the formation of brittle intermetallic compounds (IMCs) in brazed joints is of major concern. since they considerably degrade the mechanical properties. This research was examined the vacuum brazing of commercially SUS304 stainless steel with BNi-2 (Ni-Cr-B-Si) filler metal, and discussed to determine the influence of brazing temperatures on the microstructure and mechanical strength of brazed joints. In the metallographic analysis it is observed that considerable large area of Cr-B intermetallic compound phases at the brazing layer and the brazing tensile strength is related to removal of this brittle phase greatly. The mechanical properties of brazing layer could be stabilized through increasing the brazing temperature over $100^{\circ}C$ more than melting temperature of filler metals, and diffusing enough the brittle intermetallic compound formed in the brazing layer to the base metal.

Brazing Property of SUS304 Stainless Steel and BNi-2 Filler Metal with Vacuum Brazing : Fundamental Study on Brazeability with Ni-Based Filler Metal(I) (진공브레이징에 의한 SUS304 스테인리스강과 BNi-2계 삽입금속의 접합특성 : Ni기 삽입금속에 의한 브레이징 접합성의 기초적 검토(I))

  • Lee, Yong-Won;Kim, Jong-Hoon
    • Korean Journal of Materials Research
    • /
    • v.17 no.3
    • /
    • pp.142-146
    • /
    • 2007
  • Vacuum brazing method has been coming to an important process as one of the new fabricating techniques of metals and alloys. In this study, a vacuum brazing of SUS304 stainless steel with BNi-2 filler metal was carried out in $1{\times}10^{4}$ Torr of vacuum atmosphere. The formation of brittle intermetallic compounds in brazed joints between SUS304 stainless steel and BNi-2 filler metal is a major concern, since they considerably degrade the mechanical properties of joints. To obtain enough stable joining strength, it is necessary to understand the unique properties of brazing process with Ni-based filler metals containing boron. So, in this research we investigated the performance of SUS304/BNi-2 brazed system and the brazed joint properties were evaluated at room temperature by using tensile test. Metallurgical and fractographic analysis were used to characterize the microstructure, the mechanisms of brazing, and joint failure modes.

Bead Formation and Wire Temperature Distribution during Ultra-high-speed GTA Welding Using Pulse-heated Hot-wire

  • Shinozaki, K.;Yamamoto, M.;Mitsuhata, Koichi;Nagashima, Toshiharu;Kanazawa, T.;Arashin, H.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.226-234
    • /
    • 2009
  • The purpose of this study was to investigate the melting phenomenon of filler wire in detail and to obtain the precise temperature distribution of filler wire during GTA welding under the ultra-high welding speed condition in order to develop the ultra-high-speed GTA welding process with the pulse-heated hot-wire system by using three kinds of materials. The melting phenomenon of filler wire was observed using a high-speed camera and the temperature distribution of filler wire was measured using a radiation thermometer. From the above result, the adequate welding conditions of each material to make the GTA welding process with the ultra-high welding speed could be obtained. The ultra-high-speed GTA welding process needed the adequate wire current in order to obtain the adequate temperature distribution and the adequate melting position of filler wire. Moreover, the temperature distributions of three kinds of filler wire could be estimated by using the proposed simple estimation method.

  • PDF

Strength and Heat Deflection Temperature of Resin Compounds Prepared Using Different Size and Content of Ground Calcium Carbonate (중질 탄산칼슘의 입자 크기와 첨가량 변화에 따라 제조된 수지 조성물의 강도 및 열변형온도)

  • Lee, Yoonjoo;Heo, Seck;Kim, Younghee;Kim, Soo-Ryong;Kwon, Woo-Teck
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.359-362
    • /
    • 2016
  • Mineral filler is used for resin compounds, because it increases the stiffness and thermal stability of a resin compound, and it also cuts down the cost. Calcium carbonate, silica, magnesium oxide, and others are used as filler materials in general, and the type of filler material, the size, and content can affect the physical properties of compounds. Those factors also influence the viscosity of resin mixtures and the workability, and should be adjusted by changing the contents of the filler, which depends on the size. In this study, five kinds of ground calcium carbonate, which were different in size, were used to produce polyester compounds ; the physical properties were compared with the filler size and contents. The mechanical properties were measured by bending strength and tensile strength, and the heat deflection temperature was obtained for thermal stability.

A Clock Generation Scheme for TDM-CDM Converter in Gap Filler for the Satellite DMB Systems (위성 DMB용 중계기(Gap Filler)의 TDM-CDM변환부 클럭 생성 방안 연구)

  • Kim, Chong-Hoon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.1
    • /
    • pp.93-97
    • /
    • 2007
  • In this paper a new clock generation scheme for TDM-CDM converter in the Gap Filler for satellite DMB systems has been proposed. The scheme uses the frame sync signal from the Ku band TDM receiver to lock the VCXO which provides the system clock for the TDM-CDM converter. The locking algorithm can be easily implemented in the FPGA, so that no separate circuitry is needed as in conventional PLL. With a stable OCXO, The scheme can be used to generate the reference clock to the local oscillator for RF parts.

A Study on the Dielectric Properties of Silicone Rubber Filled with Silica (실리카 충진된 실리콘 고무의 유전 특성에 관한 연구)

  • Lee, Sung Ill
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.810-815
    • /
    • 2013
  • In this study, the capacitance and dielectric loss tangent of the silicone rubber which is combined with filler (30 phr~50 phr) have been measured on the range of 100 Hz~100 kHz and $30{\sim}170^{\circ}C$. It was found that when the frequency is 0.1 kHz~100 kHz and the silicone rubber is combined with 30 phr to 50 phr of filler, the capacitance of silicone rubber has increased by about 28.6 pF to 33 pF in 30 phr of filler, about 20 pF to 46.1 pF in 40 phr of filler and about 36.4 pF to 44 pF in 50 phr of filler. It seems that the volume of dielectric loss has gradually increased due to the temperature rise and the rotating of dipole in electric field through the electric dipole generated by the Si-O group which is induced by adding of filler, or the carbonyl group which is caused by oxidation. It seems that the dielectric dispersion in 0.1 kHz is caused by molecular motion of Siloxane group in main chain, and the dielectric dispersion in 10 kHz is caused by molecular motion of Methyl group in side chain.

Design of LBSs Using DGPS and Digital Mobile Broadcasting System

  • Kwon, Seong-Geun
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.2
    • /
    • pp.22-28
    • /
    • 2013
  • In this paper, new LBS (location based service) are proposed using conventional DMB (digital multimedia/mobile broadcasting) system. LBS applications are proposed that can be suitable for the subway and ground transportation based on S-DMB (satellite-DMB) and T-DMB (terrestrial-DMB) respectively. In the shaded area such as subway, the broadcasting signal transmitted from the satellite of S-DMB system should be retransmitted by the earth repeater called the gap filler and each gap filler has its own identification value called the gap filler ID which introduces the area in which the gap filler was installed. Therefore, the LBS can be implemented by using the gap filler ID of S-DMB on the subway in which the GPS (global positioning system) can't be received. Unlike the LBS on the subway, the combination of T-DMB and DGPS (differential GPS) will be introduced as a way for ground transportation. Generally, DGPS has been designed to compensate the position value calculated from the GPS signal so that positioning error of about 1 meter can be obtained by using DGPS information. T-DMB system transmitting DGPS signal will be expected to be commercial in Korea and, if using DGPS information transmitted through T-DMB network, LBS with more precise positioning than GPS alone can be implemented in the ground vehicles.

Definitions of groove and hollowness of the infraorbital region and clinical treatment using soft-tissue filler

  • Lee, Ji-Hyun;Hong, Giwoong
    • Archives of Plastic Surgery
    • /
    • v.45 no.3
    • /
    • pp.214-221
    • /
    • 2018
  • Clarification is needed regarding the definitions and classification of groove and hollowness of the infraorbital region depending on the cause, anatomical characteristics, and appearance. Grooves in the infraorbital region can be classified as nasojugal grooves (or folds), tear trough deformities, and palpebromalar grooves; these can be differentiated based on anatomical characteristics. They are caused by the herniation of intraorbital fat, atrophy of the skin and subcutaneous fat, contraction of the orbital part of the orbicularis oculi muscle or squinting, and malar bone resorption. Safe and successful treatment requires an optimal choice of filler and treatment method. The choice between a cannula and needle depends on various factors; a needle is better for injections into a subdermal area in a relatively safe plane, while a cannula is recommended for avoiding vascular compromise when injecting filler into a deep fat layer and releasing fibrotic ligamentous structures. The injection of a soft-tissue filler into the subcutaneous fat tissue is recommended for treating mild indentations around the orbital rim and nasojugal region. Reducing the tethering effect of ligamentous structures by undermining using a cannula prior to the filler injection is recommended for treating relatively deep and fine indentations. The treatment of mild prolapse of the intraorbital septal fat or broad flattening of the infraorbital region can be improved by restoring the volume deficiency using a relatively firm filler.