• Title/Summary/Keyword: Filler

Search Result 1,980, Processing Time 0.032 seconds

Paper Strength Improvement by Anionic PAM and Cationic Starch Adsorbed PCC (음이온성 PAM과 양이온성 전분으로 도포된 경질탄산칼슘에 의한 종이 강도 향상)

  • Choi, Do-Chim;Choi, Eun-Yeon;Won, Jong Myoung;Cho, Byoung-Uk
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.45 no.1
    • /
    • pp.59-66
    • /
    • 2013
  • Fillers have been used for printing paper to improve printability, sheet formation and optical properties and to reduce production costs by replacing expensive wood pulps. However, an increased filler content will decrease paper strength because filler particles interfere with fiber-fiber bonding. In order to increase filler content without sacrificing too much paper strength in high filler content papers, the surface of precipitated calcium carbonate (PCC) has been modified by adsorbing anionic polyacrylamide and cationic starch in series. The adsorbed polymer layers would enhance interactions between the filler surface and the fiber surface, improving internal bonding. It was found that the modified PCC increased paper strength at a given filler content compared to the coventional method. Negligible differences in optical properties and formation of paper, filler and fines retention and drainage on the wire section were observed between the modified and the conventional PCC. However, the decreased bulk of paper was observed when the modified PCC was used.

The Effects of the Arc Pressure Variation on the Penetration by the filler Wire Feed Rate in Pulsed TIG Welding (펄스 TIG용접에서 필러 와이어 송급속도에 따른 아크압력 변동이 용입에 미치는 영향)

  • 조상명;김진우
    • Journal of Welding and Joining
    • /
    • v.22 no.1
    • /
    • pp.71-76
    • /
    • 2004
  • In the standpoint of the arc pressure, the effects of the filler wire feed rate on the penetration was investigated in this study. The pure Ar gas was used as a shield gas and the parameters investigated were the welding current and the filler wire feed rate. By making the experiment on the arc pressure, we could know that the arc pressure was fluctuated as the depth-into-arc of the tungsten rod. Instead of the filler wire, the tungsten rod was supplied into the molten pool to make this experiment. Because the filler wire melted in arc and then we couldn't measure the arc pressure. So, the tungsten rod - the highest melting point - was used. According to the depth-into-arc of the tungsten rod, the arc pressure could be measured by using the manometer. It was proved that the arc pressure got higher as the wire feed rate was slow. It is reported the arc pressure is proportion to welding voltage and the square of welding current. But, in the filler wire TIG welding, we could blow that arc pressure was fluctuated as the depth-into-arc of filler wire was changed. We could measure the arc pressure by the variation of the filler wire feed rate and could verify that it affected bead shape and penetration.

Fabrication and Characteristics of Shielding Effects for the Complex Conductive Filler (복합 전도성 필러의 제작과 전자파 차폐 특성)

  • Park, Ju-Tae;Park, Jae-Sung;Do, Young-Soo
    • 전자공학회논문지 IE
    • /
    • v.43 no.4
    • /
    • pp.122-127
    • /
    • 2006
  • A series of conductive filler were prepared with electroless plating method. Base conductive materials of the filler were nickel and copper. The cores were prepared with Nylon 6 and rayon in different aspect ratio. Also, various complexes were made with ABS resin and conductive filler with different filler feed ratio. The conductivity of the filler was measured with conductivity analyzer and the size distributions of fillers was measured with laser particle size analyzer. Electromagnetic wave shielding efficiency of each complex film was measured with flange circular coaxial transmission line sample holder within the 1MHz$\sim$1GHz bandwidth range. From this study, the conductivity of filers surpass that of other carbon films. It is available that the filler made of fibrous materials can be applied in plastic molding industry of electric appliances as a EMI filler.

Effect of Al2O3 Filler Addition on Sintering Behavior and Physical Characteristics of BaO-B2O3-ZnO Glass Ceramic System (BaO-B2O3-ZnO 결정화 유리계에서 Al2O3 Filler의 첨가에 따른 소결거동 및 물성변화)

  • Kim, Byung-Sook;Kim, Young-Nam;Lim, Eun-Sub;Lee, Joon-Hyung;Kim, Jeong-Joo
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.2 s.273
    • /
    • pp.110-116
    • /
    • 2005
  • Suitable compositions which are sinterable at low temperature in the $BaO-B_{2}O_{3}-ZnO$ glass system were investigated as a function of the ratio between BaO and ZnO. The effect of $Al_{2}O_3$ filler on densification and physical characteristics of the glass was also examined. When the amount of $Al_{2}O_3$ filler increased, the densification rate and the values of dielectric constant, thermal expansion coefficient and hardness in the glass-filler composites decreased gradually. The decreasing rate of the physical properties accelerated when fine $Al_{2}O_3$ filler was used. However, the fracture toughness of the composite rather increased due to the existence of filler particles and pores which effectively suppressed crack propagation with addition of fine $Al_{2}O_3$ filler.

Preparation and Properties of the Fast-Curing γ-Ray-Shielding Materials Based on Polyurethane

  • Ni, Minxuan;Tang, Xiaobin;Chai, Hao;Zhang, Yun;Chen, Tuo;Chen, Da
    • Nuclear Engineering and Technology
    • /
    • v.48 no.6
    • /
    • pp.1396-1403
    • /
    • 2016
  • In this study, fast-curing shielding materials were prepared with a two-component polyurethane matrix and a filler material of PbO through a one-step, laboratory-scale method. With an increase in the filler content, viscosity increased. However, the two components showed a small difference. Curing time decreased as the filler content increased. The minimum tack-free time of 27 s was obtained at a filler content of 70 wt%. Tensile strength and compressive strength initially increased and then decreased as the filler content increased. Even when the filler content reached 60 wt%, mechanical properties were still greater than those of the matrix. Cohesional strength decreased as the filler content increased. However, cohesional strength was still greater than 100 kPa at a filler content of 60 wt%. The ${\gamma}$-ray-shielding properties increased with the increase in the filler content, and composite thickness could be increased to improve the shielding performance when the energy of ${\gamma}$-rays was high. When the filler content was 60 wt%, the composite showed excellent comprehensive properties.

Performance Characteristics of Small Sized Cross-flow Cooling Tower (소형 직교류형 냉각탑의 성능 특성에 관한 연구)

  • Sarker, M.M.A.;Kim, E.P.;Kim, J.D.;Jun, C.H.;Moon, C.G.;Yoon, J.I.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.93-98
    • /
    • 2005
  • The performance of cooling tower is dependent on the thermal performance of the packings. It's assessed by heat transfer rate and fan power. In this study, new packing was developed for application in compact type cross-flow cooling tower. The packing characteristic curve and the pressure drop curve were obtained by measuring packing characteristic values and pressure drops of small sized filler in comparison to existing mid-large sized filler. The heat transfer characteristics on small sized filler are about 66% higher than existing mid-large sized filler. The pressure drop characteristics on small sized filler are about two times of the pressure drop characteristics on existing mid-large sized filler.

  • PDF

Electrical properties of polyethylene composite films filled with nickel powder and short carbon fiber hybrid filler

  • Mironov, V.S.;Kim, Seong Yun;Park, Min
    • Carbon letters
    • /
    • v.14 no.2
    • /
    • pp.105-109
    • /
    • 2013
  • Effects of the amount of nickel powder (Ni) in Ni-carbon fiber (CF) hybrid filler systems on the conductivity(or resistivity) and thermal coefficient of resistance (TCR) of filled high density polyethylene were studied. Increases of the resistivity and TCR with increasing Ni concentration at a given hybrid filler content were observed. Using the fiber contact model, we showed that the main role of Ni in the hybrid filler system is to decrease the interfiber contact resistance when Ni concentration is less than the threshold point. The formation of structural defects leading to reduced reinforcing effect resulted in both a reduction of strength and an increase of the coefficient of thermal expansion in the composite film; these changes are responsible for the increases of both resistivity and TCR with increasing Ni concentration in the hybrid filler system.

Nanofiller as Crosslinker for Halogen-Containing Elastomers

  • Sahoo, N.G.;Kumar, E.Shiva;Das, C.K.;Panda, A.B.;Pramanik, P.
    • Macromolecular Research
    • /
    • v.11 no.6
    • /
    • pp.506-510
    • /
    • 2003
  • A Zn ion-coated nanosilica filler has been developed and tested, in chlorosulfonated polyethylene (CSPE) and polychloroprene (CR), as a vulcanizing activator, cum was reinforcing filler. In this study, ZnO was replaced by the Zn ion-coated nanosilica filler with an aim of studying the dual role of this nanofiller in CSPE and CR. In the case of CSPE vulcanizates, the presence of MgO deteriorated the state and rate of cure when the Zn ion-coated nanosilica filler was used, but in the case of CR it improved the state of cure and enhanced the modulus and tensile strength. The Zn ion-coated filler proved to be a better reinforcing-cum-curing agent than was externally added ZnO and NA-22 also proved to be a better curative in the presence of the Zn ion-coated nanosilica filler for both CSPE and CR.

Carbide Ceramics from Active-Filler-Controlled Pyrolysis in $CH_4$ Atmosphere

  • Kang, Keon-Taek;Kim, Deug-Joong;Annette Kaindl;Peter Greil
    • Journal of Powder Materials
    • /
    • v.6 no.4
    • /
    • pp.320-324
    • /
    • 1999
  • The formation, microstructure and properties of novel ceramic composite materials manufactured by active-filler-controlled polymer pyrolysis were investigated. In the presence of active filler particles such as transition metals, bulk components of various geometry could be fabricated from siliconorganic polymer. Molybdenum- and tungsten-filled polymer suspensions were prepared and their conversion to ceramic composites by annealing in $CH_4$ atmosphere were studied. Dimensional change. porosity and phase distribution (filler network) were analyzed and correlated to the resulting hardness values. Molybdenum and tungsten as active filler were carburized completely to $Mo_2C$, $W_2C$ and WC in $CH_4$ atmosphere. Consequently, microcrystalline composites with the filler reaction products embedded in a silicon oxycarbide glass matrix were formed. Hardness was increased with increasing carburization and reached 8.6-9.5 GPa in the specimen pyrolyzed in $CH_4$ atmosphere.

  • PDF

A New Model to Predict Effective Elastic Constants of Composites with Spherical Fillers

  • Kim, Jung-Yun;Lee, Jae-Kon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.11
    • /
    • pp.1891-1897
    • /
    • 2006
  • In this study, a new model to predict the effective elastic constants of composites with spherical fillers is proposed. The original Eshelby model is extended to a finite filler volume fraction without using Mori-Tanaka's mean field approach. When single filler is embedded in the matrix, the effective elastic constants of the composite are computed. The composite is in turn considered as a new matrix, where new single filler is again embedded in the matrix. The predicted results by the present model with a series of embedding procedures are compared with those by Mori-Tanaka, self-consistent, and generalized self-consistent models. It is revealed through parametric studies such as stiffness ratio of the filler to the matrix and filler volume fraction that the present model gives more accurate predictions than Mori-Tanaka model without using the complicated numerical scheme used in self-consistent and generalized self-consistent models.