• Title/Summary/Keyword: Filler wire

Search Result 70, Processing Time 0.027 seconds

Al5052 Welding by $CO_2$ Laser using Filler Wire (용접 와이어를 사용한 Al5052 $CO_2$ 레이저 용접)

  • 박기영;이경돈;김주관
    • Laser Solutions
    • /
    • v.5 no.1
    • /
    • pp.13-21
    • /
    • 2002
  • Compared to conventional welding process, laser welding does not use additional filler wire generally. However, if laser welding uses the filler wire, the applicability of the method can be broaden. When laser welding uses the filler wire, it is possible to enhance gap bridging ability and to prevent cracking in weld pool by metallurgical control. In this study, we had optimal condition and experimented gap bridging capability for butt welding with 2㎜ Al5052 alloys using the filler wire feeder. As the experimental parameters, wire feed rate and wire diameter are considered and then the performance of wire feed is evaluated under various filler wire welding conditions.

  • PDF

The Effects of the Arc Pressure Variation on the Penetration by the filler Wire Feed Rate in Pulsed TIG Welding (펄스 TIG용접에서 필러 와이어 송급속도에 따른 아크압력 변동이 용입에 미치는 영향)

  • 조상명;김진우
    • Journal of Welding and Joining
    • /
    • v.22 no.1
    • /
    • pp.71-76
    • /
    • 2004
  • In the standpoint of the arc pressure, the effects of the filler wire feed rate on the penetration was investigated in this study. The pure Ar gas was used as a shield gas and the parameters investigated were the welding current and the filler wire feed rate. By making the experiment on the arc pressure, we could know that the arc pressure was fluctuated as the depth-into-arc of the tungsten rod. Instead of the filler wire, the tungsten rod was supplied into the molten pool to make this experiment. Because the filler wire melted in arc and then we couldn't measure the arc pressure. So, the tungsten rod - the highest melting point - was used. According to the depth-into-arc of the tungsten rod, the arc pressure could be measured by using the manometer. It was proved that the arc pressure got higher as the wire feed rate was slow. It is reported the arc pressure is proportion to welding voltage and the square of welding current. But, in the filler wire TIG welding, we could blow that arc pressure was fluctuated as the depth-into-arc of filler wire was changed. We could measure the arc pressure by the variation of the filler wire feed rate and could verify that it affected bead shape and penetration.

Bead Formation and Wire Temperature Distribution during Ultra-high-speed GTA Welding Using Pulse-heated Hot-wire

  • Shinozaki, K.;Yamamoto, M.;Mitsuhata, Koichi;Nagashima, Toshiharu;Kanazawa, T.;Arashin, H.
    • Proceedings of the KWS Conference
    • /
    • 2009.11a
    • /
    • pp.226-234
    • /
    • 2009
  • The purpose of this study was to investigate the melting phenomenon of filler wire in detail and to obtain the precise temperature distribution of filler wire during GTA welding under the ultra-high welding speed condition in order to develop the ultra-high-speed GTA welding process with the pulse-heated hot-wire system by using three kinds of materials. The melting phenomenon of filler wire was observed using a high-speed camera and the temperature distribution of filler wire was measured using a radiation thermometer. From the above result, the adequate welding conditions of each material to make the GTA welding process with the ultra-high welding speed could be obtained. The ultra-high-speed GTA welding process needed the adequate wire current in order to obtain the adequate temperature distribution and the adequate melting position of filler wire. Moreover, the temperature distributions of three kinds of filler wire could be estimated by using the proposed simple estimation method.

  • PDF

Development of Intelligent Filler Wire Feeding Device for Improvement of Weld quality (용접부 품질향상을 위한 지능형 용접 와이어 공급 장치 개발)

  • Lee J.S.;Sohn Y.I.;Park K.Y.;Lee K.D.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.950-955
    • /
    • 2005
  • This paper describes an intelligent filler wire feeding device which can control 3- dimensional seam tracking and the filler wire speed by measuring the gap position and the joint gap width in laser welding. By means of visual sensor controlled filling the missing material into the joint gap and 3 dimensional seam tracking, lineup errors from manufacturing tolerances and the repeatability of lineup jigs and weld robot can be balanced and at an even seam quality which avoids weld defects. In this paper, we assessed weld quality in 2mm sheets of A16061 which had various gap width by using the intelligent filler wire feeding device.

  • PDF

Microstructure and mechanical properties of Nd:YAG Laser welded AZ31-H24 Magnesium alloy using AZ61 filler metal (AZ61 filler wire를 사용하여 Nd:YAG Laser 용접한 AZ31-H24합금의 미세조직과 기계적 특성)

  • Ryu, Chung-Seon;Lee, Mok-Yeong;Bang, Guk-Su;Jang, Ung-Seong
    • Proceedings of the KWS Conference
    • /
    • 2007.11a
    • /
    • pp.322-324
    • /
    • 2007
  • Nd:YAG laser welding of AZ31B-H24 magnesium alloy was carried out using AZ61 filler wire(Mg-6wt%Al-1wt%Zn). Microstructure and mechanical properties of welded joint were examined by optical microscopy, scanning electronic microscopy(SEM), energy dispersive spectroscopy(EDS), electron probe micro analyzer(EPMA) and victors hardness, tensile test at the room and elevated temperature. Test results indicate that the specimens welded with AZ61 filler wire have better tensile strength, elongation and victors hardness at room temperature than those of welded without filler wire. However tensile strength are similar but elongation are quite different at elevated temperature.

  • PDF

Development of Intelligent Filler Wire Feeding Device for Improvement of Weld quality (용접부 품질향상을 위한 지능형 용접 와이어 공급 장치 개발)

  • Lee Jae-Seok;Sohn Young-Il;Park Ki-Young;Lee Kyoung-Don
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.59-66
    • /
    • 2006
  • In laser welding, automatic seam tracking is important to adjust the laser head position in real time as it moves along the seam. Also if the joint gap is occurred, filling the missing material into the joint gap is necessary to prevent welding defects and bad welding quality. In general, the joint gap width is not constant along the seam due to a variety of reason. So it is essential to control the filler wire speed into the joint gap to acquire good welding quality. This paper describes an intelligent filler wire feeding device which can control 3-dimensional seam tracking and the filler wire speed by measuring the gap position and the joint gap width in laser welding. We call this device as Smart Micro Control system(SMC). To achieve this objective, we assessed weld quality in 2mm sheets of A16061 which had various gap width by using the developed device. From the experimental results, It was found the possibility that the developed device could be used in welding various 3-dimensional structures.

Development of Statistical Model and Neural Network Model for Tensile Strength Estimation in Laser Material Processing of Aluminum Alloy (알루미늄 합금의 레이저 가공에서 인장 강도 예측을 위한 회귀 모델 및 신경망 모델의 개발)

  • Park, Young-Whan;Rhee, Se-Hun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.4 s.193
    • /
    • pp.93-101
    • /
    • 2007
  • Aluminum alloy which is one of the light materials has been tried to apply to light weight vehicle body. In order to do that, welding technology is very important. In case of the aluminum laser welding, the strength of welded part is reduced due to porosity, underfill, and magnesium loss. To overcome these problems, laser welding of aluminum with filler wire was suggested. In this study, experiment about laser welding of AA5182 aluminum alloy with AA5356 filler wire was performed according to process parameters such as laser power, welding speed and wire feed rate. The tensile strength was measured to find the weldability of laser welding with filler wire. The models to estimate tensile strength were suggested using three regression models and one neural network model. For regression models, one was the multiple linear regression model, another was the second order polynomial regression model, and the other was the multiple nonlinear regression model. Neural network model with 2 hidden layers which had 5 and 3 nodes respectively was investigated to find the most suitable model for the system. Estimation performance was evaluated for each model using the average error rate. Among the three regression models, the second order polynomial regression model had the best estimation performance. For all models, neural network model has the best estimation performance.

Laser Welding of AZ31B-H24 Mg Alloy with AZ61 Filler Wire (AZ61 필러 와이어를 첨가한 AZ31B-H24 마그네슘 합금의 레이저 용접)

  • Ryu, Chung-Sun;Bang, Kook-Soo;Lee, Mok-Young;Chang, Woong-Sung
    • Journal of Welding and Joining
    • /
    • v.26 no.6
    • /
    • pp.54-58
    • /
    • 2008
  • Laser welding with AZ61 filler wire was carried out to improve formability though reduction of porosity and formation of under fill bead. Optimum welding condition and mechanical properties of butt joint for $400{\times}500{\times}1.3mm$ magnesium sheets were studied. Optimal welding conditions of laser power, welding speed, and defocusing length are 1000W, 3m/min, and 2mm, respectively. Results of tensile test indicated that both tensile strength and elongation of specimens welded with filler wire were improved at room temperature because of reduction of porosity and under-filled bead formation in addition to the precipitation hardening and microstructure refinement by Al-Mn and Mg-Al-Zn precipitates. At elevated temperature of $200{\sim}350^{\circ}C$, fracture location of tensile specimen was shifted from weld metal to base metal, indicating less softening of weld metal than base metal.

Comparison of Powder Feeding and Wire Feeding in Laser Cladding (분말송급 및 와이어송급을 이용한 레이저 클래딩 특성)

  • Ahn, Young-Nam;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.31 no.4
    • /
    • pp.13-16
    • /
    • 2013
  • In this research, laser cladding characteristics were investigated for various filler metal feeding methods such as powder, cold wire, and hot wire feeding. Appropriate parameter window, deposition rate, material efficiency and dilution for each filler feeding method were evaluated with same laser power and cladding speed range. Laser powder cladding has wider process parameter window but higher material efficiency and lower dilution were achieved by laser wire cladding. Among these feeding methods, laser hot-wire cladding showed best efficiency in material usage and deposition rate.