• Title/Summary/Keyword: Film Boiling

Search Result 154, Processing Time 0.028 seconds

Film Boiling Heat Transfer Characteristics in Liquid-Liquid System (액체,액체계의 막비등열전달 특성)

  • 김병주
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.1
    • /
    • pp.87-94
    • /
    • 1992
  • Film boiling heat transfer characteristics in liquid-liquid systems are studied experimentally. Liquid gallium as a heating liquid, n-pentane, freon-113, and ethanol are used as boiling liquids. In gallium-n-pentane and gallium-freon-113 systems the minimum film boiling point occurred at higher temperature than those observed in copper-boiling liquid systems. However MFB point occurred almost at the same temperature for the case of ethanol. This difference are due to the effects of contact angle and interfacial agitations in gallium-boiling liquid systems. Film boiling heat transfer rate, for the gallium-boiling liquid systems considered in this work, found to be approximately 10% higher than those in copper-boiling liquid systems, whose main cause is believed to be gallium-boiling liquid interfacial agitations affected by the density ratio between gallium and boiling liquid.

Film Boiling Heat Transfer from Relatively Large Diameter Downward-facing Hemispheres

  • Kim Chan Soo;Suh Kune Y.;Park Goon Cherl;Lee Un Chul;Yoon Ho Jun
    • Nuclear Engineering and Technology
    • /
    • v.35 no.4
    • /
    • pp.274-285
    • /
    • 2003
  • Film boiling heat transfer coefficients for a downward-facing hemispherical surface are measured from the quenching tests in DELTA (Downward-boiling Experimental Loop for Transient Analysis). Two test sections are made of copper to maintain Bi below 0.1. The outer diameters of the hemispheres are 120 mm and 294 mm, respectively. The thickness of both the test sections is 30 mm. The effect of diameter on film boiling heat transfer is quantified utilizing results obtained from the two test sections. The measured heat transfer coefficients for the test section with diameter 120 mm lie within the bounding values from the laminar film boiling analysis, while those for diameter 294 mm are found to be greater than the numerical results on account of the Helmholtz instability. There is little difference observed between the film boiling heat transfer coefficients measured from the two test sections. In addition, the higher thermal conductivity of copper results in the higher minimum heat flux in the tests. For the test section of diameter 120 mm, the Leidenfrost point is lower than that for the test section of diameter 294 mm. Destabilization of film boiling propagates radially inward for the 294 mm test section versus radially outward for the 120 mm Test Section.

Numerical investigation of film boiling heat transfer on the horizontal surface in an oscillating system with low frequencies

  • An, Young Seock;Kim, Byoung Jae
    • Nuclear Engineering and Technology
    • /
    • v.52 no.5
    • /
    • pp.918-924
    • /
    • 2020
  • Film boiling is of great importance in nuclear safety as it directly influences the integrity of nuclear fuel in case of accidents involving loss of coolant. Recently, nuclear power plant safety under earthquake conditions has received much attention. However, to the best of our knowledge, there are no existing studies reporting film boiling in an oscillating system. Most previous studies for film boiling were performed on stationary systems. In this study, numerical simulations were performed for saturated film boiling of water on a horizontal surface under low frequencies to investigate the effect of system oscillation on film boiling heat transfer. A coupled level-set and volume-of-fluid method was used to track the interface between the vapor and liquid phases. With a fixed oscillation amplitude, overall, heat transfer decreases with oscillation frequency. However, there is a frequency region in which heat transfer remains nearly constant. This lock-on phenomenon occurs when the oscillation frequency is near the natural bubble release frequency. With a fixed oscillation frequency, heat transfer decreases with oscillation amplitude. With a fixed maximum amplitude of the additional gravity, heat transfer is affected little by the combination of oscillation amplitude and frequency.

Numerical investigation on ballooning and rupture of a Zircaloy tube subjected to high internal pressure and film boiling conditions

  • Van Toan Nguyen;Hyochan Kim;Byoung Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.7
    • /
    • pp.2454-2465
    • /
    • 2023
  • Film boiling may lead to burnout of the heating element. Even though burnout does not occur, the heating element is subject to deformation because it is not sufficiently strong to withstand external loads. In particular, the ballooning and rupture of a tube under film boiling are important phenomena in the field of nuclear reactor safety. If the tube-type cladding of nuclear fuel ruptures owing to high internal pressure and thermal load, radioactive materials inside the cladding are released to the coolant. Therefore, predicting the ballooning and rupture is important. This study presents numerical simulations to predict the ballooning behavior and rupture time of a horizontal tube at high internal pressure under saturated film boiling. To do so, a multi-step coupled simulation of conjugated film boiling heat transfer and ballooning using creep model is adopted. The numerical methods and models are validated against experimental values. Two different nonuniform heat flux distributions and four different internal pressures are considered. The three-step simulation is enough to obtain a convergent result. However, the single-step simulation also successfully predicts the rupture time. This is because the film boiling heat transfer characteristics are slightly affected by the tube geometry related to creep ballooning.

A Study on the Correlations Development for Film Boiling Heat Transfer on Spheres

  • Jeong, Yong-Hoon;Beak, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05a
    • /
    • pp.437-442
    • /
    • 1998
  • Film boiling is the heat transfer mechanism that can occurs when large temperature differences exist between a cold liquid and hot material. In the nuclear reactor safety analysis, film boiling has become an important issue in recent years. During severe accident, hot molten corium fall into relatively cool water, and fragment into spheres or sphere-like particles. If the steam explosion is triggered, the thermal energy of corium is converted into the mechanical energy that can threaten the integrity of reactor vessel or reactor cavity. One of the important concerns in the heat transfer analysis during pre-mixing stage is the film boiling heat transfer between the corium and water/steam two-phase flow. Until now, considerable works on film boiling heat been performed. However, there is no available correlation adequate for severe accident analysis. In this study, boiling heat transfer correlations have been developed, and their applicable ranges heat been enlarged and their prediction accuracy has been enhanced.

  • PDF

Experiments on Time Dependent Film Boiling on a Sphere

  • Ounpanich Bancha;Pomprapha Temsiri;Archakositt Urith;Nilsuwankosit Sunchai
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.403-406
    • /
    • 2002
  • A number of the experiments on the phenomenon in which the thermal energy was transferred from a hot sphere to the surrounding water through the film boiling process had been conducted. As the sphere only carried the thermal energy associated with its initially high temperature but did not contain any other thermal source, the film boiling was only driven by the decreasing temperature of the sphere and, thus, was time dependent. The results from the experiments showed that the temperature of the sphere was slowly decreased in the beginning. This corresponded to the period in which the sphere was penetrating the water surface. Later, when the sphere was fully submerged and the transition film boiling was observed over the whole surface, the temperature of the sphere was decreased relatively much faster. In the last stage, the temperature of the sphere was again slowly decreased. This was considered caused by the relatively low temperature of the sphere, which reduced and later ceased the film boiling process. In addition, the estimation of the departure rate of the steam bubbles from the film layer was also correlated for the experiments.

  • PDF

Experimental Study on Film Boiling of Liquid Droplets on Oxidized Copper Surface (산화 구리표면에서 액적의 막비등에 관한 실험적 연구)

  • Kim, Yeung Chan
    • Journal of ILASS-Korea
    • /
    • v.25 no.2
    • /
    • pp.68-73
    • /
    • 2020
  • In the present study, experiments on the film boiling of liquid droplets on oxidized copper surface was conducted. The shape of pure water droplets was observed, and the evaporation rate of them was measured during the film boiling evaporation process. The droplet of initial volume 16 ~ 30 µl was applied onto the oxidized copper surface heated up to 300 ~ 500℃, then the shape of the droplet was analyzed during the film boiling evaporation. Experimental results showed that there was good correlation between dimensionless volume and dimensionless time. However, a significant difference in evaporation rate for small and large droplets discussed in previous study was not found.

A Mechanistic Model for Forced Convective Transition Boiling of Subcooled Water in Vertical Tubes (수직관내 미포화수의 강제대류 천이비등에 대한 역학적 모델)

  • Lee, Kwang-Won;Baik, Se-Jun;Han, Sang-Good;Joo, Kyung-Oin;Yang, Jae-Young
    • Nuclear Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.503-517
    • /
    • 1995
  • A mechanistic model for forced convective transition boiling has been developed to predict transition boiling heat flux realistically. This model is based on a postulated multi­stage boiling process occurring during the passage time of an elongated vapor blanket specified at a critical heat flux condition. Between the departure from nucleate boiling (DNB) and the departure from film boiling (DFB) points, the boiling heat transfer is established through three boiling stages, namely, the macrolayer evaporation and dryout governed by nucleate boiling in a thin liquid film and the unstable film boiling. The total heat transfer rate during the transition boiling is the sum of the heat transfer rates after the DNB weighted by the time fractions of each stage, which are defined as the ratio of each stage duration to the vapor blanket passage time. The model predictions are compared with some available experimental transition boiling data. From these comparisons, it can be seen that the transition boiling heat fluxes including the maximum heat flux and the minimum film boiling heat flux are nil predicted at low qualities/high pressures near 10 bar.

  • PDF

Study on Film-Boiling Heat Transfer of Subcooled Turbulent Liquid Film Flow on Horizontal Plate (수평 과냉 . 난류액막류의 막비등 열전달에 관한 연구)

  • 김영찬;서태원
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.835-842
    • /
    • 2000
  • Film boiling heat transfer of the subcooled turbulent liquid film flow on a horizontal plate was investigated by theoretical and experimental studies. In the theoretical analysis, by solving the integral energy and momentum equations analytically, some generalized expressions for Nusselt number was deduced. Next, by comparing the deduced equations with the experimental data on the turbulent film boiling heat transfer of the subcooled thin liquid film flow, the semi-empirical relation between the Nusselt number based on the modified heat transfer coefficient and the Reynolds number was obtained. The correlating equation was very similar to that of the turbulent heat transfer in a single phase flow, and it was found that the heat transfer was dissipated to increase the liquid temperature.

  • PDF

A Study on Cooling of Hot Steel Surface by Water-Air Mixed Spray(I) -The Effect of Air Mass Flux on Film Boiling Heat Transfer- (물-공기 혼합분무에 의한 고온 강판 냉각에 대한 연구 (I) -막비등 열전달에 대한 공기질량유속의 영향-)

  • Lee, Pil-Jong;Jin, Sung-Tae;Lee, Sung-Hong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.3
    • /
    • pp.247-255
    • /
    • 2004
  • The cooling characteristic of water-air mixed spray for high water mass flux is not well defined, compared to that of highly pressurized spray. A series of research program was planned to develop the boiling correlation for whole temperature range in case of water-air mixed spray with high water mass flux. The cooling experiments of hot steel surface with initial temperature of 820$^{\circ}C$ were conducted in unsteady state with relatively high water mass flux. A computer program was developed to calculate the heat flux inversely from measured data by three inserted thermocouples. Finally the effects of water and air mass flux on the averaged film boiling heat flux and wetting temperature were studied. In this 1st report, it is found that the boiling curve was similar to that of highly pressurized spray and the decreased slope of heat flux in film boiling region with respect to surface temperature became steep by increasing air mass flux. Also it is shown that, by increasing air mass flux, the averaged heat flux in film boiling region was increased, and then saturated and the wetting temperature was increased, and then decreased. Finally when the heat flux in film boiling region is compared with that of highly pressurized spray, it is known that the cooling is improved by introducing air up to 60%.