• Title/Summary/Keyword: Fine Particle

Search Result 1,541, Processing Time 0.033 seconds

Estimation of Optimum PM2.5 Ionic Concentration Control Strategy for Reducing Fine Particle Mass Concentrations in Seoul (서울시 초미세먼지 질량농도 저감을 위한 입자 내 이온성분 최적감축방법 예측)

  • Kim, Jung Youn;Lee, Ji Won;Kim, Yong Pyo
    • Particle and aerosol research
    • /
    • v.6 no.4
    • /
    • pp.151-164
    • /
    • 2010
  • Inorganic ions and water are major components of ambient fine particles. Water content in fine particles is mainly determined by ambient meteorological conditions and the concentrations of hygroscopic species such as inorganic ions. Thus, to reduce fine particle mass concentration, it is important to accurately estimate the relationship between water content and the concentration of ions in fine particles. Water content in fine particles in Seoul are estimated by using a gas/particle equilibrium model to understand the characteristics of fine particle mass concentration. In addition, sensitivity of fine particle mass concentration to the changes of particulate ionic species (sulfate, nitrate, and ammonium) is estimated. It was found that water content in Seoul is mostly determined by the concentrations of the hygroscopic ionic species, especially, sulfate and ammonium, and ambient relative humidity.

Effect of Fine Content of the Fine Aggregate is on the Quality of the Cement Mortar (잔골재의 미립분 함유량이 시멘트 모르타르의 품질에 미치는 영향)

  • Kim, Min-Sang;Park, Yong-Jun;Jo, Man-Ki;Kim, Young-Tae;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.121-122
    • /
    • 2016
  • Recently in the domestic construction industry, source depletion has resulted in instances of ready-mixed concrete companies using river sand or crushed sand with high fine particle content. But the use of such low-quality fine aggregate is known to cause concrete quality to decline and have negative effects. So this study analyzed how much of an impact changes in fine particle content have on cement mortar's engineering characteristics. As a result, the flow rate and air quantity, which are characteristics of unhardened mortar, were shown to decrease as fine particle content increased, and compression strength, a characteristic of light mortar, was shown to subtly increase as fine particle content decreased.

  • PDF

Bending Strength of Textured Alumina Prepared by Slip Casting in a Strong Magnetic Field

  • Suzuki, Tohru S.;Uchikoshi, Tetsuo;Morita, Koji;Hirage, Keijiro;Sakka, Yoshio
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1099-1100
    • /
    • 2006
  • The mechanical properties of ceramics materials can be tailored by designing their microstructures. We have reported that development of texture can be controlled by slip casting in a strong magnetic field followed by heating even for diamagnetic ceramics such as alumina. A strong magnetic field of 12T was applied to the suspension indcuding alumina powder to rotate each particle during slip casting. The sintering was conducted at the desired temperature in air without a magnetic field. C-axis of alumina was parallel to the magnetic field. Bending strength of textured alumina depended on the direction of oriented microstructure.

  • PDF

Effect of May 31, 2022 Miryang Forest Fire on Fine Particle Concentration in Nearby Urban Areas (2022년 5월 31일 발생한 밀양산불이 인근 도시 지역의 미세먼지 농도에 미치는 영향)

  • Byung-Il Jeon
    • Journal of Environmental Science International
    • /
    • v.32 no.1
    • /
    • pp.37-46
    • /
    • 2023
  • This study investigated the effect of May 31, 2022 Miryang wildfire on fine particle concentrations in Busan and Gimhae, which are neighboring urban areas. In addition, fine particle characteristics and air pollution concentrations were investigated in Miryang, where haze occurred. The Miryang city wildfire that occurred on May 31, 2022, at 0925 LST, was driven by strong north winds and increased fine particle concentrations in Dongsangdong and Jangyoodong, Gimhae City, which are approximately 35 km to the southeast and south, respectively, of the wildfire occurrence site. Furthermore, the fine particle concentration in Myeongjidong, which is approximately 50 km south-southeast of the wildfire site, exhibited a temporary increase at 1400 LST owing to the effects of wildfire smoke. On the morning of June 1, the day after the fire, the Miryang area had very bad visibility because of the smoke from the fire. Therefore the PM10 and PM2.5 concentrations in Naeildong, 3 km south of the wildfire site, were 276 ㎍/㎥ and 222 ㎍/㎥, respectively, at 1200 LST. In addition, the gases O3, CO, and SO2 showed high concentrations at the time of haze generation. This study provides insights into policy making in response to the rapid increase in fine dust when wildfire occurs near cities.

A Review on the Effects of Fine Particle Content on Shear Strength of Coarse Geomaterials (세립분 함유율이 조립재료의 전단강도에 미치는 영향에 관한 기초적 검토)

  • 신동훈;이경필;구방서
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.861-866
    • /
    • 2003
  • While coarse geomaterials with abundant fine particles are common, comparatively little information is available to know their engineering behaviour. In this study, the effects of fine particle content of coarse geomaterials on engineering properties, such as shear strength, deformability and permeability were investigated. It was known through large triaxial compression tests that when they are compared with good rock materials, the rock materials with abundant fine particles have different compaction characteristics, low shear strength, low stiffness, and low permeability.

  • PDF

Particle Dispersion and Fine Scale Eddies in Wall Turbulence (벽면난류에 대한 미세와 구조와 입자분산)

  • Kang, Shin-Jeong;Tanahashi, Mamoru;Miyauchi, Toshio
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.11 s.254
    • /
    • pp.1101-1106
    • /
    • 2006
  • To investigate a relation between fine scale eddies and particle dispersion in a near-wall turbulence, direct numerical simulations of turbulent channel flow laden particle are performed for $Re_{\tau}$=180. The motions of 0,8 million particles are calculated for several particle response times ($t_p$) which is the particle response time based on stokes’ friction law. The number density of particles has a tendency to increase with approaching the near-wall regions ($y^+$<20) except for cases of very small and large particle response times (i.e. $t_p$=0.02 and 15). Near the wall, the behavior and distribution of particles are deeply associated with the fine scale eddies, and are dependent on particle response times and a distance from the wall. The Stokes number that causes preferential distribution in turbulence is changed by a distance from the wall. The influential Stokes number based on the Burgers' vortex model is derived by using the time scale of the fine scale eddies. The influential Stokes number is also dependent on a distance from the wall and shows large value in the buffer layer.

Sudden rise of fine particle concentration after Typhoon USAGI and NARI passage in Busan (태풍 우사기와 나리 통과 후 부산지역 미세먼지 농도의 급상승에 관한 연구)

  • Jeon, Byung-Il
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.4
    • /
    • pp.557-564
    • /
    • 2011
  • This study was conducted to investigate the sudden rise of fine particle concentration after the passage of typhoon USAGI and NARI in Busan. Nocturnal inversion layer was formed at atmospheric boundary layer and wind direction changed from southerly wind to northeasterly wind after USAGI passed through Busan. Fine particle concentration in Busan rapidly increased by subsidence of air pollutants released from sources and dust transported from in the vicinity of industrial regions. Wind direction changed from northeasterly wind to southeasterly wind, wind velocity increased and lower atmosphere became extremely unstable after NARI passed through Busan. $PM_{10}$ concentration of Busan increased sharply because of surface dust dispersed by strong wind. Fine particle concentration generally decreases by precipitation and wind after typhoon passes through. However, the concentration can also go up not only by subsidence and transportation in nocturnal inversion layer but also by surface dust which temporarily occurs by strong wind.

Concentration Rise of Fine Particle according to Resuspended Dust from Paved Roads after Sudden Heavy Rain in Busan (부산 도심지역 기습 폭우 후 형성된 도로면 토사의 재비산에 의한 미세먼지 농도 상승)

  • Jeon, Byung-Il
    • Journal of Environmental Science International
    • /
    • v.25 no.5
    • /
    • pp.705-713
    • /
    • 2016
  • This study investigates the concentration sudden rise in fine particle according to resuspended dust from paved roads after sudden heavy rain in Busan on August 25, 2015. The localized torrential rainfall in Busan area occurred as tropical airmass flow from the south and polar airmass flow from north merged. Orographic effect of Mt. Geumjeong enforced rainfall and it amounted to maximum 80 mm/hr at Dongrae and Geumjeong region in Busan. This heavy rain induced flood and landslide in Busan and the nearby areas. The sudden heavy rain moved soil and gravel from mountainous region, which deposited on paved roads and near roadside. These matters on road suspended by an automobile transit, and increased fine particle concentration of air. In addition outdoor fine particle of high concentration flowed in indoor by shoes, cloths and air circulation.

An Investigation for Improvement of Grain Shape and Very Fine Sand of Crushed Sand (부순모래의 입형 및 미립분 함유량 개선을 위한 기술 검토)

  • Kim, Ki-Hoon;Yoon, Seob;Lee, Yong-Sung;Yoon, Gi-Won;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.71-74
    • /
    • 2004
  • Recently, with the wide shortage of natural sand resources, it has been increasingly used the crushed sand. rushed sand is made by the process of crushing the rocks artificially, which has different particle properties compared with that of natural sand. Because such different panicle properties of crushed sand results in an undesirable effects of concrete. improvement technology for crushed sand particle properties like grain shape and fine particle needed during the manufacturing process. In this paper, improvement technology of grain shape and fine particle is reported. According to test results, adequate investment for manufacturing facilities like impact crusher and abrasion test machine is required to meet the advanced grain shape and grading of crushed sand. Based on the investigation of test result, mixing of natural land and crushed sand with given proportion can achieve the improvement of grain shape. For improving excessive fine panicle contents. current manufacturing system also can enhance the existing technology for fine particle without additional investment. It can be concluded that adequate investment and research can improve the quality of crushed sand.

  • PDF

Effect of Binder Types and Replacement ratio on the Properties of Blast Slag Mortar Using the Recycled Fine Aggregates (결합재 종류 및 치환율 변화가 순환잔골재 사용 고로슬래그 모르타르의 품질에 미치는 영향)

  • Feng, Hai-Dong;Park, Kyung-Taek;Baek, Dae-Hyun;Kim, Dae-Gun;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05a
    • /
    • pp.77-78
    • /
    • 2011
  • This study is analysis of effect of binder types and replacement ratio on the properties of blast furnace slag mortar using the recycled fine aggregates. The results of the study were was follows. Compressive strength was increased according to an increase in replacement ratio of fine particle cement and gypsum. Absorption was reduced according to an increase in replacement ratio of fine particle cement and recycled aggregate fine powder.

  • PDF