• Title/Summary/Keyword: Fine stone powder

Search Result 19, Processing Time 0.026 seconds

A Flexural Strength Properties of Extruding Concrete Panel Using Stone Powder Sludge (석분슬러지를 이용한 압출성형 콘크리트 패널의 휨강도 특성)

  • Choi Hun-Gug;Jung Eun-Hye;Kawg Eun-Gu;Kang Cheol;Seo Jung-Pil;Kim Jin-Man
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2006.05a
    • /
    • pp.115-118
    • /
    • 2006
  • Nowadays the using of concrete is generalized, and construction material is demanded to be lightweight according to increasing the height and capacity of buildings. Therefore, it needs to develop the products having the great quality and various performance. Extruding concrete panel made of cement, silica source, and fiber, and it is a good lightweight concrete material in durability and thermostable. The silica of important ingredient is natural material with hish SiO2 contents and difficult in supply because of conservation of environment. On the other hand, the stone powder sludge discharged about 20-30% at making process of crushed fine aggregate and it is wasted. The stone powder sludge is valuable instead of silica ole because the stone powder sludge includes water of about 20-60%, SiO2 of about 64% and it has fine particles. This experiment is on the properties of extruding concrete panel using the stone powder sludge use instead of silica. From this experiment, we find that it is possible to replace the silica as stone power sludge up to 50%,

  • PDF

Raw Materials Composition of Recycled Cement from Waste Concrete Powder (폐콘크리트 미분말을 활용한 재생시멘트의 원료조합)

  • Kwon, Eun-Hee;Ahn, Jae-Cheol;Park, Dong-Cheon;Kang, Byeung-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.61-62
    • /
    • 2012
  • This study is for analyzing possibility of utilizing as cement from waste concrete. The scrapped fine powder which contains a large amount of hydrate of cement can supercede lime stone, and greenhouse gas reductions are expected. However, Fine Aggregate powder efficient separation technology development is essential for that limestone substitution effect and reduce greenhouse gas emissions in order to facilitate through the recycling of the scrapped fine powders.

  • PDF

A study on the quality performances of the high flowing concrete for binder types (분체의 종류에 따른 고유동 콘크리트의 품질성능에 관한 연구)

  • 권영호;이현호;하재담
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.567-572
    • /
    • 2002
  • This research investigates experimentally an effect on the quality performances of the high flowing concrete according to binder types. The purpose of this study is to determine the optimum mix proportion of the high flowing concrete having good flowability, viscosity and no-segregation. For this purpose, two types using belite cement+lime stone powder(LSP) and furnace slag cement+lime stone powder are selected and tested by design factors including water cement ratio, fine and coarse aggregate volume ratio. As test results of this study, the optimum mix proportion for binder types is as followings. 1) One type based belite cement ; water cement ratio $51^{\circ}C$, fine aggregate volume ratio $43^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $42.7^{\circ}C$. 2) Another type based slag cement : water cement ratio $41^{\circ}C$, fine aggregate volume ratio $47^{\circ}C$ and coarse aggregate volume ratio $53^{\circ}C$, replacement ratio of LSP $13.5^{\circ}C$.

  • PDF

A Study on the Mix Design and Quality Factors of the Combined High Flowing Concrete Using High Belite Cement

  • Kwon, Yeong-Ho
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.121-129
    • /
    • 2002
  • This study investigates experimentally into the design factors and quality variations having an effect on the properties of the combined high flowing concrete to be poured in the slurry wall of Inchon LNG in-ground receiving terminal. Especially, high belite cement and lime stone powder as cementitious materials and viscosity agent in order to improve self-compaction and hydration heat are used in this study. Water-cement ratio(W/C), fine aggregate volume ratio(Sr) and coarse aggregate volume ratio(Gv) as design factors of the combined high flowing concrete are applied to determine the optimum mix design proportion. Also quality variations for sensitivity test are selected items as followings. (1)Surface moisture(5cases) and (2)Fineness modulus of fine aggregate(5cases), (3)Concrete temperature(3cases), (4)Specific surface(3cases) and particle size of lime stone powder. As experimental results, water-cement ratio, fine and coarse aggregate volume ratio are shown as the optimum range 51%, 43% and 53% separately considering site condition of slurry wall. Also quality factors by sensitivity test should be controlled in the following ranges. (1) Surface moisture :to.67% and (2)Fineness modulus 2.6$\pm$0.2 of fine aggregate, (3)Concrete temperature l0-20t, (4) Specific surface 6,000$\textrm{cm}^2$/g and particle size 9.7$\pm$1.0${\mu}{\textrm}{m}$ of lime stone powder. Based on the results of this study, the optimum mix design proportion of the combined high flowing concrete are selected and poured successfully in the slurry wall of LNG in-ground tank.

  • PDF

The Properties of Concrete Incorporating Stone Powders as Part of Fine Aggregates (잔골재의 일부로 사용된 부순골재 미분말이 콘크리트 성질에 미치는 영향)

  • Kang, Su-Tae;Seo, Jun-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.116-122
    • /
    • 2016
  • This study was intended to evaluate the properties of concrete incorporating stone powders which are created during crushing natural stones to produce crushed aggregates. For concretes with 0~30 wt.% partial replacement fine aggregates with stone powders, experiments of slump, air content, strength and drying shrinkage were carried out. The experiments found that the increase of the amount of stone powders sharply decreased slump and air content. Partially using stone powders instead of fine aggregates was found to increase both compressive and tensile strength slightly. Substituting higher amount of stone powders presented higher drying shrinkage. When HRWRA was added into the concrete with stone powders in order to obtain workability similar to that of plain concrete without stone powders for the same water-cement ratio and unit weight of cement, air content increased with the amount of HRWRA but strength and drying shrinkage were hardly affected by adding HRWRA.

FRACTURE STRENGTH OF IMPROVED DENTAL STONE ACCORDING TO WATER/POWDER RATIO (혼수비에 따른 초경석고의 파절강도)

  • Eoum Jung-Hee;Park Charn-Woon;Park Kwang-Sun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.2
    • /
    • pp.220-229
    • /
    • 2001
  • This study was performed to evaluate the fracture resistance of three improved die stone materials according to water/powder ratio. There are lots of handling conditions which affect the physical properties of improved dental stone, and it's well known that the water/powder ratio significantly affect the strength of die stone. If water/power ratio was incorrect, following disadvantages were showed : (1) susceptibility to dimensional change due to abrasion, (2) limited reproduction of fine detail, (3) lack of strength. The maxillary master casts were made of additional silicone impressions(Exaflex, GC America. Inc. USA). Three type IV die stones such as Fuji Rock (GC Europe Intreleuvenlaan, Leuven, Belgium), Velmix(Kerr, Manufacturing company, USA), and Crytal Rock( Maruishi Gypsum Co. Ltd, Japan) were tested. A total of 160 casts were prepared, separated, and tested on the Instron Testing Machine(Model 4201, Co. USA). The obtained results of this study were as follows : 1. Fuji Reck and Velmix less 3ml than the water/power ratio of manufacturer's instruction showed the highest resistance to fracture. According to increasing water/powder ratio, fracture resistance was significantly increased(P<0.05). Crystal Rock showed the highest fracture value when it was mixed with the water/power ratio of manufacturer's instruction. 2. Water/powder ratio of the manufacturer's instructions and less 3ml than that showed lower fracture value of hand mix than that of vacuum mix. Water/powder ratio of more 3ml, 6ml than manufacturer's instructions was not significantly different between hand mix and vacuum mix(p>0.05). 3. Velmix had the highest viscoelastic value among three die materials when it was mixed with the manufacturer's instruction. Viscoelasticity was decreased according to increasing water/powder ratio.

  • PDF

The Investigation for the Possibility to Utility on the Natural Zeolite and Mud Stone as Admisxture (혼화재로서 천연제올라이트 및 이암의 활용성 검토에 관한 연구)

  • 김화중;김태섭;박정민;한종훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.167-172
    • /
    • 1993
  • In domestic, there are not adequate admixtures for concrete now, so the study on that is required deeply, Accordingly the purpose of this study is to analyze the application possibilities of Natural Zeolite and Mud Stone as admixtures for concrete through comparing the compressive strength prorerties of mortar mixed with imported Silica Fume those mixed with domestic Zeolite and Mud Stone. As the results from this study, the optimum displacement rate of Silica Fume, Zeolite and Mud Stone is 15%, 5~10%, 15% respectively. In Zeolite and Mud Stone, the compressive strength is higher in proportion as the powder is fine. Consequentely, the application possibility the application possibility of Zeolite and Mud Stone is very sufficient as admixtures for concrete.

  • PDF

Effects of Aggregate Grading on the Performance of High-Flowing Concrete with General Strength (일반 강도용 고유동 콘크리트에서의 골재 입도 영향)

  • Kim, Sang Chel;Kim, Yun Tae;Shin, Dong Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.6
    • /
    • pp.63-72
    • /
    • 2012
  • The high-flowing concrete requires additionally or excessively more expensive admixture than conventional concrete. So, the concrete has not to be widely used in practical field due to the increase of production price, need of additional facilities, and excessive development of concrete strength in associate with addition of too much cementitious material even though it has more significant advantages than conventional concrete. Thus, this study aims at developing high-flowing concrete with general strength unlike high strength which has been carried out in conventional study. To observe the role of aggregate in the concrete quantitatively and to increase the performance of high-flowing concrete effectively, parametric studies were carried out such as W/C, s/a, fineness modulus of aggregate, contribution degree of particle sizes, and the effect of 13mm aggregate and fine stone powder as a partial replacement of aggregates. And the effect of these factors on performance of the concrete was evaluated by measuring slump-flow and gap of penetration height in U-typed instrument. As a result, it was found that flowability of high-flowing concrete depends upon grading of fine aggregate more significantly than that of coarse aggregate and is enhanced greatly as fineness modulus of fine aggregate decreases and the value of s/a increases. In addition, the application of 13mm aggregate and fine stone powder are expected as a partial replacement of aggregate in order to increase the performance of high-flowing concrete more effectively.

Microstructure of the Hybrid Al2O3-TiC/Al Composite by Rapid Solidification and Stone Mill Process. (급속응고 및 Stone Mill 공정에 의해 제조된 하이브리드 Al2O3-TiC/Al 복합재료의 미세조직)

  • 김택수;이병택;조성석;천병선
    • Journal of Powder Materials
    • /
    • v.10 no.1
    • /
    • pp.15-20
    • /
    • 2003
  • Hybrid $A1_2O_3-TiC$ ceramic particle reinforced 6061 and 5083 Al composite powders were prepared by the combination of twin rolling and stone mill crushing process, followed by consolidating processes of cold compaction, degassing and hot extrusion. The composite bar consists of lamellar structure of ceramic particle rich area and matrix area, in which the hybrid was decomposed into each TiC of about $3-4\mutextrm{m}$ and $AI_2O_3$ particles of about $1-2\mutextrm{m}$ in diameter. It also found that fine $Mg_2Si$ precipitates of about 30 nm were embedded in the matrix, which have grains of about 3 $\mutextrm{m}$. Higher UTS was measured at the 5083 composite bar compared to the conventionally fabricated composite, due to again refinement effect by the rapid solidification. No particle was shown to form in the interface between the matrix and reinforcement, whereas carbon was diffused into the matrix.

The Influence of Fine Particles under 0.08 mm Contained in Aggregate on the Characteristics of Concrete (골재 중 0.08 mm 이하 미립분의 종류가 콘크리트의 특성에 미치는 영향)

  • Song, Jin-Woo;Choi, Jae-Jin
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.347-354
    • /
    • 2013
  • Recently, crushed fine aggregates are being widely used due to the shortage of natural sand. In Korea, the amount of fine particles under 0.08 mm contained in crushed fine aggregates is restricted to be less than 7%, which is similar to the regulations of ASTM but is still very strict compared to the regulations of the other nations. In addition, the crushed aggregates already have in them about 20% of fine particles under 0.08 mm which occurs while they are crushed. The fine particles are not easy to wash out, and also to maximize the use of resources it is deemed necessary to review the possibility of enhancing the limit of the amount of fine particles. Therefore, this study conducted experiments to analyze the characteristics of fine particles under 0.08mm and their influence on the properties of concrete. Experiments using silt and cohesive soil were also done for comparison. In the experiments on fine particles, the methylene blue value was more in the soil dust contained in silt and cohesive soil than in the stone powder contained in crushed fine aggregates. Also, the methylene blue value had a close correlation with packing density and liquid & plastic limit. In the experiments done with concrete, the quantity of high range water reducing agent demanded to obtain the same slump increased as the fine particle substitution rate heightened. However, in the experiment which used stone powder testing the compressive strength and tensile strength of concrete in the same water-cement ratio, there was little change in strength with less than 20% addition of fine particles among the fine aggregates, and no meaningful difference in the amount of drying shrinkage of concrete.