• Title/Summary/Keyword: Fingertip Touch

Search Result 10, Processing Time 0.033 seconds

Fingertip Touch Recognition using Shadow Information for General Wall Touch Screen (일반벽 터치 스크린의 손가락 터치 판별을 위한 그림자 정보의 사용)

  • Jeong, Hyun-Jeong;Hwang, Tae-Ryang;Choi, Yong-Gyun;Lee, Suk-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.17 no.12
    • /
    • pp.1430-1436
    • /
    • 2014
  • We propose an algorithm which detects the touch of the fingertip on a general wall using the shadow information. Nowadays, there is a demand for presentation systems which can perceive the presenter's action so that the presenter can use natural movements without extra interface hardware. One of the most fundamental techniques in this area is the detection of the fingertip and the recognition of the touch of the fingertip on the screen. The proposed algorithm recognizes the touch of the fingertip without using the depth information, and therefore needs no depth or touch sensing devices. The proposed method computes the convex hull points of both the fingertip and the shadow of the fingertip, and then computes the distance between those points to decide whether a touch event has occured. Using the proposed method, it is possible to develop a new projector device which can perceive a fingertip touch on a general wall.

Tangible AR interaction based on fingertip touch using small-sized non-square markers

  • Park, Hyungjun;Jung, Ho-Kyun;Park, Sang-Jin
    • Journal of Computational Design and Engineering
    • /
    • v.1 no.4
    • /
    • pp.289-297
    • /
    • 2014
  • Although big-sized markers are good for accurate marker recognition and tracking, they are easily occluded by other objects and deteriorate natural visualization and level of immersion during user interaction in AR environments. In this paper, we propose an approach to exploiting the use of rectangular markers to support tangible AR interaction based on fingertip touch using small-sized markers. It basically adjusts the length, width, and interior area of rectangular markers to make them more suitably fit to longish objects like fingers. It also utilizes convex polygons to resolve the partial occlusion of a marker and properly enlarges the pattern area of a marker while adjusting its size without deteriorating the quality of marker detection. We obtained encouraging results from users that the approach can provide better natural visualization and higher level of immersion, and be accurate and tangible enough to support a pseudo feeling of touching virtual products with human hands or fingertips during design evaluation of digital handheld products.

Two camera based touch screen system for human computer interaction (인간과 컴퓨터 상호 작용을 위한 2개의 카메라 기반의 터치 스크린 시스템)

  • Kim, Jin-Kuk;Min, Kyung-Won;Ko, Han-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.319-320
    • /
    • 2006
  • In this paper, we propose a vision based system employing two cameras to provide effective touch screen function. The two main processes - determining touch (or no-touch) and contact location of screen plane - are essential for enabling touch screen function. First region of interest is found by using color characteristic and histogram for determining the contact mode. Second, if the hand touches the mirror, the fingertip point in image is found using the correlation coefficient based on the mirror attribute. Subsequently, the fingertip coordinate in image is transformed to the location in mirror plane by using four predefined points (termed as four-point method) and bilinear transform. Representative experimental results show that the proposed system is suited to touch screen.

  • PDF

3D Fingertip Estimation based on the TOF Camera for Virtual Touch Screen System (가상 터치스크린 시스템을 위한 TOF 카메라 기반 3차원 손 끝 추정)

  • Kim, Min-Wook;Ahn, Yang-Keun;Jung, Kwang-Mo;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.17B no.4
    • /
    • pp.287-294
    • /
    • 2010
  • TOF technique is one of the skills that can obtain the object's 3D depth information. But depth image has low resolution and fingertip occupy very small region, so, it is difficult to find the precise fingertip's 3D information by only using depth image from TOF camera. In this paper, we estimate fingertip's 3D location using Arm Model and reliable hand's 3D location information that is modified by hexahedron as hand model. Using proposed method we can obtain more precise fingertip's 3D information than using only depth image.

Tangible AR Interaction based on Fingertip Touch Using Small-Sized Markers (소형 마커를 이용한 손가락 터치 기반 감각형 증강현실 상호작용 방안)

  • Jung, Ho-Kyun;Park, Hyungjun
    • Korean Journal of Computational Design and Engineering
    • /
    • v.18 no.5
    • /
    • pp.374-383
    • /
    • 2013
  • Various interaction techniques have been studied for providing the feeling of touch and improve immersion in augmented reality (AR) environments. Tangible AR interaction exploiting two types (product-type and pointer-type) of simple objects has earned great interest for cost-effective design evaluation of digital handheld products. When the sizes of markers attached to the objects are kept big to obtain better marker recognition, the pointer-type object frequently and significantly occludes the product-type object, which deteriorates natural visualization and level of immersion in an AR environment. In this paper, in order to overcome such problems, we propose tangible AR interaction using fingertip touch combined with small-sized markers. The proposed approach facilitates the use of convex polygons to recover the boundaries of AR markers which are partially occluded. It also properly enlarges the pattern area of each AR marker to reduce the sizes of AR markers without sacrificing the quality of marker detection. We empirically verified the quality of the proposed approach, and applied it in the process of design evaluation of digital products. From experimental results, we found that the approach is comparably accurate enough to be applied to the design evaluation process and tangible enough to provide a pseudo feeling of manipulating virtual products with human hands.

Reconstruction of Fingertip Amputation by Using Digital Artery Perforator Flap (수부동맥 관통 피판을 이용한 손가락끝 절단의 재건)

  • Ha, Young In;Jung, Sung Gyun;Shin, Ho Seong;Park, Eun Soo;Park, Jang Woo;Choi, Hwan Jun
    • Archives of Plastic Surgery
    • /
    • v.35 no.4
    • /
    • pp.483-486
    • /
    • 2008
  • Purpose: Fingertip injuries are the most common hand injuries and may lead to significant disability. Knowledge of fingertip anatomy is mandatory to treat these injuries effectively. All surgical techniques used for coverage of fingertip injuries must be based on the nature of the injury and the patient's age. Many authors have studied the method of fingertip reconstruction because goals of these treatments should include maintaining length, sensibility, motions, and appearance. The purpose of this study is to evaluate the effect of digital artery perforator flap for fingertip reconstruction without aesthetic and functional problems. Methods: From November 2006 to March 2007, the authors performed fingertip reconstruction on 3 fingers of 3 patients, aged between 41 to 54 years (average age, 47 years) using digital artery perforator flap. Results: All fingers recovered successfully and there were no necrosis of the flap. We followed up 3 cases more than 5 months. Light touch and temperature sensation could be detected in all flaps and the static two-point discrimination test was 8 mm. Conclusion: This flap is an alternative choice for coverage of fingertip defects. This method also takes short time to procedure and to recovery. The digital artery perforator flap has never been reported in Korea, however it is considered as a useful method for treatment of fingertip injury.

The Effect of Additional Haptic Supplementation on Postural Control During Squat in Normal Adult (추가적인 햅틱적용이 정상 성인의 스쿼트 동안 자세조절에 미치는 영향)

  • Kim, Mi-Ju;Lee, Ho-Cheol;Park, Ji-Won
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.134-142
    • /
    • 2012
  • Purpose: This study examined the effect on postural control during the stimulation of haptic touch with fingertip on the stable surface at quiet standing posture, squat flexion stage, 60 degrees squat stage and squat extension stage. Methods: The postural sway was measured on the force platform, while 30 subjects were squatting, under three different haptic touch conditions (No Touch [NT], Light Touch [LT], Heavy Touch [HT]), above the touch pad in front of their body midline. Three different haptic touch conditions were divided into 1) NT condition; squatting as right index fingers held above the touch pad, 2) LT condition (<1N); squatting as the touch pad was in contact with right index fingers pulp with a pressure not exceeding 1N and 3) HT condition; squatting as subjects were allowed to use the touch pad for mechanical support by transmitting onto it with as much force, choosing with their index fingers. Results: There was significant decrease in LT, rather than that of NT (p<0.01), and in HT, rather than that of LT (p<0.01), as the results of the distance and velocity of center of pressure (COP) in mediolateral direction at quiet standing position. In anteroposterior direction, the distance and velocity of COP in LT and HT showed significant decrease, when compared to that of the data of NT (p<0.01). There was no significant difference between the 3 conditions (NT, LT, and HT), with respect to the distance and velocity of COP in mediolateral direction, during dynamic balance (squat flexion stage, squat extension stage) (p>0.05). In anteroposterior direction, the results of the distance and velocity of COP in HT showed significant decrease when compared to that of the data of NT (p<0.05). Conclusion: Light touch, during the task, decreased the postural sway at static balance. The results suggest that haptic touch should be applied, appropriately, because it varies the effects according to different conditions.

A Study of the Effects of Massage on Hamstring Muscles Extensibility (맛사지가 슬 근 신장성에 미치는 영향)

  • Chung Hyung-Kuk;Choi Jin-Ho;Kwon Hyuk-Cheol
    • The Journal of Korean Physical Therapy
    • /
    • v.5 no.1
    • /
    • pp.3-8
    • /
    • 1993
  • The purpose of this study was to investigate the specificity of the effort of massage on hamstring muscles extensibility a9 measured by fingertip to floor test. The participant were healthy young men(n=25). Manual massage was applied to the posterior aspects of the both thigh (hamsting portion) during 20 mins. We measured four times ; that is, after rest 20 mins-before massage, immediately after massage, immediately after massage and 20 mins. after massage. As the middle fingers are reaching beyond the floor level, the level was considered as ( + ) level. And the middle fingers did not touch the 리oor, the level was considered as ( - ) level. Results were as fellows : 1) There was significant difference between group 1 and group 2(P<0.05), 2) There was no significant difference between group 2 and group 3(P>0.05). 3) There was no significant difference between group 3 and group 4(P>0.05). Therefore, the extensibility of hamstring muscles was increased after massage more than rest during 20 mins, before massage, and the effects of massage application were prolonged during 20 mins, after massage.

  • PDF

Fingertip Extraction and Hand Motion Recognition Method for Augmented Reality Applications (증강현실 응용을 위한 손 끝점 추출과 손 동작 인식 기법)

  • Lee, Jeong-Jin;Kim, Jong-Ho;Kim, Tae-Young
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.316-323
    • /
    • 2010
  • In this paper, we propose fingertip extraction and hand motion recognition method for augmented reality applications. First, an input image is transformed into HSV color space from RGB color space. A hand area is segmented using double thresholding of H, S value, region growing, and connected component analysis. Next, the end points of the index finger and thumb are extracted using morphology operation and subtraction for a virtual keyboard and mouse interface. Finally, the angle between the end points of the index finger and thumb with respect to the center of mass point of the palm is calculated to detect the touch between the index finger and thumb for implementing the click of a mouse button. Experimental results on various input images showed that our method segments the hand, fingertips, and recognizes the movements of the hand fast and accurately. Proposed methods can be used the input interface for augmented reality applications.

Effect of light touch on body sway during a stable posture with blocked visual information

  • Kim, Jong-Gun;Kim, Jin-Hong;Do, Kwang-Sun;Yim, Jongeun
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.138-142
    • /
    • 2016
  • Objective: The purpose of this study was to investigate how light touch with a finger affects balance ability when a posture is maintained in the condition of visual information blockage and to provide a fundamental material for developing balance ability in the process of rehabilitation treatment. Design: Cross-sectional study. Methods: The study subjects were 17 healthy men and women in their twenties and thirties who were studying at S University in Seoul. The system was comprised of an equilateral triangular force platform. Subjects were asked to step on the foot position of the force platform (Good Balance, Finland) barefooted for 30 seconds, with eyes closed, hands hanging down loosely, and feet comfortably apart. It was connected to a laptop by using Bluetooth technology. An experiment was conducted in the following three circumstances: 1) no-touch trial, 2) light touch to the back (T7 area), and 3) light touch to the middle finger of the left hand. Each subject was given a 10-minute break between consecutive measurements. The experimental circumstances were performed randomly. Anteroposterior sway (APSV), mediolateral sway velocity (MLSV), and velocity moment (VM) were measured. Results: The APSVs (mm/s) were $9.32{\pm}3.37$ and $5.45{\pm}2.98$; the MLSVs (mm/s), $6.39{\pm}3.35$ and $3.31{\pm}2.48$; and VM ($mm^2/s$), $17.13{\pm}11.75$ and $6.76{\pm}8.31$ in the first and second experimental circumstances, respectively. APSV, MLSV, and VM values were significantly improved with the 1) no-touch trial and 2) light touch to the back trail conditions compared with the 3) light touch to the middle finger of the left hand condition (p<0.05). Conclusions: This study revealed that the balance ability for maintaining a body posture was influenced more by light touch to the back (T7) than by light touch with the sensitive fingertip and body sway diminished after visual information was blocked.