• Title/Summary/Keyword: Fire Dynamics Simulation

Search Result 162, Processing Time 0.032 seconds

Fire Simulations (화재시뮬레이션)

  • Kim Sang-Moon;Yoon Sang-Youl;Kim Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.4 no.1
    • /
    • pp.8-13
    • /
    • 2006
  • Fire simulation has been developed for decades to analyze fire cases and provide a tool to study fundamental fire dynamics and combustion. There are three way of fire simulation which are a full scale simulation, an experimental simulation and a computational simulation. In case of a full scale simulation, because a higher cost, a higher risk, more efforts are needed, a demand for it has been decreased. But recently a demand for an experimental simulation and a computational simulation has been increased. A computational simulation has several advantages; lower cost, short period, many case studies, more visual results, a quantitative result and etc. FDS(Fire Dynamics Simulator) which has been developed in BFRL(Building and Fire Research Laboratory), NIST(National Institute of Standards and Technology) is a popular world wide code for fire simulation. Lack of accurate predictions by the model could lead to erroneous conclusions with regard to fire safety. All results should be evaluated by the informed judgment of the qualified user.

  • PDF

Numerical Simulation of a Forest Fire Spread (산불 전파의 수치 시뮬레이션)

  • Lee, Myung-Sung;Won, Chan-Shik;Hur, Nahm-Keon
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.2
    • /
    • pp.137-143
    • /
    • 2008
  • In the present study, a forest fire spread was simulated with a three-dimensional, fully-transient, physics-based, computer simulation program. Physics-based fire simulation is based on the governing equations of fluid dynamics, combustion and heat transfer. The focus of the present study is to perform parametric study to simulate fire spread through flat and inclined wildland with vegetative fuels like trees or grass. The fire simulation was performed in the range of the wind speeds and degrees of inclination. From the results, the effect of the various parameters of the forest fire on the fire spread behavior was analyzed for the future use of the simulation in the prediction of fire behavior in the complex terrain.

A Fire Computer Simulation of Inner Space with Fire Shutters and Refuge Stairs (방화셔터와 피난계단이 존재하는 실내 환경의 화재 컴퓨터 시뮬레이션)

  • Yoo, Doo-Yul;Yang, Jung-Min
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1617-1624
    • /
    • 2013
  • This paper analyzes the relation between fire shutters and fire spread by conducting fire simulation on inner space with fire shutters. Using Fire Dynamics Simulator (FDS), a commercial fire simulation software, the simulation is done on an ideal inner robby, where fire size and the open/close of fire shutters are varied. Our simulation environment can derive significant fire parameters such as temperature variation of fire room walls and entrances of refuge stairs, variation of carbon dioxide, and soot spread. According to the simulation results, temperature and carbon dioxide distribution in refuge stairs have little dependence on vent open or close, but the part close of fire shutters blocks soot inflow to refuge stairs.

Numerical Study on Propylene Vertical Wall Fires (프로필렌 수직벽 화재의 수치적 연구)

  • Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.133-137
    • /
    • 2009
  • The Fire Dynamics Simulator (FDS), a computational fluid dynamics model for fire simulation, was applied to propylene vertical wall fires, to confirm its accuracy in simulation of vertical wall fires. The temperature profiles at the center of the burner obtained for mass loss rates per unit area in the range of $7.0{\sim}29.29g/m^2-s$ were compared with those of experiment. Comparisons of the heat flux distributions along the vertical centerline on the wall surface were made with the measurements. It was shown that the computed temperature profiles were in good agreement with the experiment. It was also noted that the peak temperature near the wall was underpredicted, the heat flux was too high compared with the measurements, and hence improvements are required for FDS in simulation of the vertical wall fires.

Simulation and Damage Analysis of an Accidental Jet Fire in a High-Pressure Compressed Pump Shelter

  • Jang, Chang Bong;Choi, Sang-Won
    • Safety and Health at Work
    • /
    • v.8 no.1
    • /
    • pp.42-48
    • /
    • 2017
  • Background: As one of the most frequently occurring accidents in a chemical plant, a fire accident may occur at any place where transfer or handling of combustible materials is routinely performed. Methods: In particular, a jet fire incident in a chemical plant operated under high pressure may bring severe damage. To review this event numerically, Computational Fluid Dynamics methodology was used to simulate a jet fire at a pipe of a compressor under high pressure. Results: For jet fire simulation, the Kemeleon FireEx Code was used, and results of this simulation showed that a structure and installations located within the shelter of a compressor received serious damage. Conclusion: The results confirmed that a jet fire may create a domino effect that could cause an accident aside from the secondary chemical accident.

Analysis on the Implementation Status of Domestic PBD (Performance Based Design) - Focusing on the Fire Scenario and Simulation (국내 성능위주설계의 시행현황 분석 - 화재시나리오 및 시뮬레이션을 중심으로)

  • An, Sung-Ho;Mun, Sun-Yeo;Ryu, Ill-Hyun;Choi, Jun-Ho;Hwang, Cheol-Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.32-40
    • /
    • 2017
  • The current status of Performance-Based Design (PBD) implemented in 4 wide areas (Seoul, Gyeonggi, Incheon and Busan) over the past 5 years was reviewed with regard to the number of PBD implementation and target buildings. Then, detailed status related to fire scenarios, input information for fire simulation, and grid size were analyzed with the pre-review for the PBD. As a result, the domestic PBD was mainly applied to the mixed occupancy. In the fire simulations performed on the identical fire scenario and fire space, the maximum heat release rate (HRR) varied significantly depending on the PBD designer. Various combustibles were also considered for the identical fire source, and their combustion properties also showed considerable uncertainty. In addition, the applicability of accurate input information for predictive models of heat and smoke detectors was examined. Finally, the average grid size for the fire simulation using Fire Dynamics Simulator (FDS) was analyzed, and the improvement of PBD to minimize designer dependency was proposed.

A Reliability Analysis on FDS Pyrolysis Model through Comparing the Room-Corner (ISO 9705) Test (룸 코너 콘 칼로리미터 시험(ISO 9705)과 비교를 통한 FDS 열분해 모델의 신뢰성 분석)

  • Yang, Sung-Jin;Lee, Chang-Deok;Oh, Ji-Eun;Kang, Chan-Yong;Kim, Hag-Beom;Lee, Duck-Hee
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.585-593
    • /
    • 2011
  • Actual fire test under a laboratory and fire simulation by using computer are considered into main methodology in order to estimate and predict fire size of railway train. Even if practical fire size could be obtained from the full-model railway car test such as a large scale cone-calorimeter test, it is not always possible and realistic due to that expensive cost and attendant dangers could in no way be negligible. In this point of view, fire simulation analysis method based on the computational fluid dynamics could be proposed as an alternative and it seems to be also efficient and reasonable. However, simulation results have to be verified and validated in accordance with the proper procedure including comparing analysis with the actual fire test. In this paper, fire load and growth aspect was investigated through the room corner test (ISO 9705) for the mock-up model of the actual railway car. Then, it was compared with the output data derived from the simulation by using Pyrolysis Model of the FDS (Fire Dynamics Simulator, by NIST) for the exact same domain and condition corresponding with pre-performed room-corner test. This preliminary verified and validated fire modeling method could enhance the reliability of output data derived from the fire simulation under the similar domain and condition.

  • PDF

A Study on Sensitivity Analysis for Numerical Solution of Passenger Train Fire (여객 열차 화재의 수치해석을 위한 민감도 분석)

  • Kim, Woo-Seok;Roh, Sam-Kew;Jung, Woo-Sung
    • Fire Science and Engineering
    • /
    • v.23 no.1
    • /
    • pp.1-6
    • /
    • 2009
  • The aim of this study is to analyse the sensitivity of fire simulation parameters including grid size and solid angle number which affect the performance of subway cabin fire simulation by FDS 4.07 version. The results of sensitivity analysis shows average of $10{\sim}20%$ differences in plume temperature, upper layer temperature, and layer height depending on the change of grid size. The study also shows that simulation with 0.05m grid size produces better resolution than that with coarse one which is 0.1m.

Integrated fire dynamics and thermomechanical modeling framework for steel-concrete composite structures

  • Choi, Joonho;Kim, Heesun;Haj-ali, Rami
    • Steel and Composite Structures
    • /
    • v.10 no.2
    • /
    • pp.129-149
    • /
    • 2010
  • The objective of this study is to formulate a general 3D material-structural analysis framework for the thermomechanical behavior of steel-concrete structures in a fire environment. The proposed analysis framework consists of three sequential modeling parts: fire dynamics simulation, heat transfer analysis, and a thermomechanical stress analysis of the structure. The first modeling part consists of applying the NIST (National Institute of Standards and Technology) Fire Dynamics Simulator (FDS) where coupled CFD (Computational Fluid Dynamics) with thermodynamics are combined to realistically model the fire progression within the steel-concrete structure. The goal is to generate the spatial-temporal (ST) solution variables (temperature, heat flux) on the surfaces of the structure. The FDS-ST solutions are generated in a discrete form. Continuous FDS-ST approximations are then developed to represent the temperature or heat-flux at any given time or point within the structure. An extensive numerical study is carried out to examine the best ST approximation functions that strike a balance between accuracy and simplicity. The second modeling part consists of a finite-element (FE) transient heat analysis of the structure using the continuous FDS-ST surface variables as prescribed thermal boundary conditions. The third modeling part is a thermomechanical FE structural analysis using both nonlinear material and geometry. The temperature history from the second modeling part is used at all nodal points. The ABAQUS (2003) FE code is used with external user subroutines for the second and third simulation parts in order to describe the specific heat temperature nonlinear dependency that drastically affects the transient thermal solution especially for concrete materials. User subroutines are also developed to apply the continuous FDS-ST surface nodal boundary conditions in the transient heat FE analysis. The proposed modeling framework is applied to predict the temperature and deflection of the well-documented third Cardington fire test.

ASSESSMENT ON NUMERICAL ANALYSIS OF THERMAL FLOW INDUCED BY FIRE (화재시 열유동장의 수치해석에 대한 평가 연구)

  • Kim, J.Y.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.156-160
    • /
    • 2011
  • As building becomes larger, taller and more complex due to industrialization and urbanization, it tends to be vulnerable to fire and establishment of effective measures for fire safety is demanded. Especially the fact that the smoke hinders evacuation and fire-fighting activities as well as becomes the major cause of life casualty emphasizes the importance of smoke control system. To design and operate the smoke control system success folly, it is necessary to analyze and predict precisely the thermoflow induced by fire in building. The unsteady three-dimensional analysis of thermoflow induced by fire with diverse variables such as building structure, fire conditions and smoke control facilities can be effectively carried out with numerical method In this study, using the FDS(Fire Dynamics Simulation) program that spreads widely as the analysis tool for thermoflow of fire, the analysis of thermoflow in partition of building induced by fire and comparison with the experimental results for assessment of numerical analysis are presented.

  • PDF