• Title/Summary/Keyword: Fire Resistance Performance Test

Search Result 199, Processing Time 0.019 seconds

A Study on the Flame Resistance Performance and Smoking Characteristics of the Flame-Resistant Paint (방염도료의 방염성능 및 발연특성에 관한 연구)

  • Kim, Hwang-Jin;Lee, Sung-Eun;Oh, Kyu-Hyung
    • Fire Science and Engineering
    • /
    • v.23 no.5
    • /
    • pp.78-83
    • /
    • 2009
  • 17 kinds of fire resistant paint which are currently used were painted on the MDF, to find flame resistance performance and smoking characteristics according to principal ingredient and characteristics of fire resistant paint. 45 degree combustion test and smoke density test were conducted to investigate the flame resistance performance and smoking characteristics. According to the 45 degree combustion test, acrylic resin type fire resistant paint showed the most excellent fire resistance performance. And the water soluble fire resistant paint showed better fire resistance performance compare to the solvent soluble paints. Also gloss paint showed better fire resistance performance than the flat paint. Based on the smoke density test, the smoke generation of fire resistant treated specimen of acrylic resin type was least. And the water soluble fire resistant paint generate little smoke than solvent soluble fire resistant paint.

An experimental study on fire resistance of medical modular block

  • Kim, Hyung-Jun;Lee, Jae-Sung;Kim, Heung-Youl;Cho, Bong-Ho;Xi, Yunping;Kwon, Ki-Hyuck
    • Steel and Composite Structures
    • /
    • v.15 no.1
    • /
    • pp.103-130
    • /
    • 2013
  • Fire performance and fire safety of high-rise buildings have become major concerns after the disasters of World Trade Center in the U.S. in 2001 and Windsor tower in Spain in 2005. Performance based design (PBD) approaches have been considered as a better method for fire resistance design of structures because it is capable of incorporating test results of most recent fire resistance technologies. However, there is a difficulty to evaluate fireproof performance of large structures, which have multiple structural members such as columns, slabs, and walls. The difficulty is mainly due to the limitation in the testing equipment, such as size of furnace that can be used to carry out fire tests with existing criteria like ISO 834, BS 476, and KS F 2257. In the present research, a large scale calorie meter (10 MW) was used to conduct three full scale fire tests on medical modular blocks. Average fire load of 13.99 $kg/m^2$ was used in the first test. In the second test, the weighting coefficient of 3.5 (the fire load of 50 $kg/m^2$) was used to simulate the worst fire scenario. The flashover of the medical modular block occurred at 62 minutes in the first test and 12 minutes in the second test. The heat resistance capacity of the external wall, the temperatures and deformations of the structural members satisfied the requirements of fire resistance performance of 90 minutes burning period. The total heat loads and the heat values for each test are calculated by theoretical equations. The duration of burning was predicted. The predicted results were compared with the test results, and they agree quite well.

Evaluation of the Fire Resistance Performance of Interior Anchor Type CFT Columns through Loaded Heating Test

  • Kim, Sunhee;Yom, Kyongsoo;Choi, Sungmo
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.1
    • /
    • pp.39-48
    • /
    • 2013
  • The fire resistance performance of generic CFT columns has been verified through various tests and analyses and the columns are widely used for fire resistance designs abroad. In this study, 3 groups of specimens (Non-fire protection, reinforcement with steel fiber and fire resistance paint) are suggested in order to evaluate the fire resistance performance of interior anchor type concrete-filled steel tubular columns having efficient cross-sections through loaded heating tests. Axial deformation-time relationship and in-plane temperatures are compared to evaluate the fire resistance performance of the specimens associated with variables. Suggested from the fact that the interior anchors exposed to fire exert influence on fire resistance performance due to thermal expansion, the reinforcements using steel fiber and fire resistance paint are verified to mitigate contraction and improve fire resistance performance. The result obtained from the tests of interior anchor type concrete-filled tubular columns is expected to be used for effective fire resistance design in association with previously conducted studies.

Strength Properties of RC Slabs under Elevated Temperatures from Fire (화재시 온도증가로 인한 RC 슬래브의 강도 특성)

  • Im, Cho-Rong;Chung, Chul-Hun;Kim, Yu-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.25 no.4
    • /
    • pp.48-60
    • /
    • 2010
  • The fire resistance performance of 2 RC slabs after exposure to the ISO-834 fire standard without loading has been experimentally investigated. A Comparison is made of the fire resistance performance between RC slabs without PP(polypropylene) fibers and RC slabs with PP fibers. From the fire test results, the presence of PP fibers in RC slabs can reduce spalling and enhance their fire resistance. Until now, the determination of fire resistance of reinforced concrete(RC) slabs has essentially been based on tabulated data. According to ACI 216 code and EUROCODE 2, the design of concrete structures is essentially based on tabulated data for appropriate concrete cover and various fire durations. From the comparison between fire test results and codes, current fire design provisions of codes such as the ACI 216 and the EUROCODE 2 are unconservative for estimating mechanical properties of RC slabs at elevated temperatures.

Fire Resistance Performance and Thermal Performance Evaluation of Structural Insulated Panels for Low-Energy Houses (구조단열패널의 저에너지주택 적용을 위한 내화 및 단열성능 평가)

  • Lee, Hyeon-Ju;Nah, Hwan-Seon;Lee, Cheol-Hee;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.3 no.2
    • /
    • pp.36-46
    • /
    • 2012
  • Structure Insulated Panel (SIP) is an wooden structure material with which structure and insulation functions are satisfied. Hence, it would be a cost-effective model to implement low energy house which has higher insulation and structure performance and which the wall thickness is able to be reduced. In this study, performance of thermal insulation and fire resistance were evaluated in order to verify applicability to low energy house. Fire resistance test is performed on vertical load bearing members for partitions, and the test results satisfy one hour of fire resistance condition according to KS F 2257. The members include two layers of fireproof gypsum board with thicknesses of 12.5mm attached to SIP. Thermal insulation performance is satisfied with the 2012 standard ($0.225W/m^2{\cdot}K$). As the performance of resistance and thermal insulation are satisfied, SIP is expected to be applied to low energy building materials. In the future, the structural safety will be confirmed by structural performance and seismic performance test and the guidelines for distribution will be drawn up.

Calculation of Limit Temperature on H-Beam Flexural Member Through the Thermal Stress Analysis under the Lateral Load (재하된 H형강 휨재의 열응력해석을 이용한 한계온도 산정)

  • Yoon, Sung Kee;Lee, Chy Hyoung;Koo, Bon Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.4
    • /
    • pp.387-397
    • /
    • 2015
  • The domestic fire resistance performance test is conducted as a prescriptive design method such as quality test. In quality test there are 2 methods, unloaded fire resistance test and fire resistance test under load. In realistic, these tests, however, have problems with expense, time and diversity of structure. This study reviewed fire resistance performance of H-beam flexural member by thermal stress analysis using finite element ABAQUS program. This research is for the performance-based design reviewing applicability of domestic standard. As a result of this study, limit temperatures per each load ratio provied for proper performance of fire resistancy.

Development and Performance of Cementitious Materials for Fire Resistance of Tunnel (터널 내화용 시멘트계 재료의 개발 및 성능 평가)

  • Won, Jong Pil;Choi, Seok Won;Park, Chan Gi;Park, Hae Kyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4C
    • /
    • pp.265-273
    • /
    • 2006
  • This study aims at evaluation of the fire resistance performance of cementitious materials for fire protection of tunnel. For this purpose, the research procedure was divided into three parts. First, base mix proportion with different material type were determined by fire test. Second, the fire test of cementitious materials for fire resistance were performed on base mix proportions to evaluated their performance. Third, the performance of cementitious materials for fire resistance compare to the target value and existing commercial products. If the performance of developed cemetitious materials for fire resistance were satisfied the target value, this studies were stopped. But, this research return to first process if the performance of cementitious materials for fire resistance are not satisfied the target value. As a result of this study, the spalling did not happen for develop and existing commercial product. Also, developed cementitious materials for fire resistance are shown with excellent compressive strength, flexural strength, and bond strength, because it used a height density aggregate. And developed cementitious materials has sufficient resistance for fire.

Evaluation of Fire Performance for High Strength Concrete Mock-up Column with Fiber by Unloaded Fire Test (비재하 내화시험에 의한 섬유혼입 고강도 콘크리트 Mock-up 기둥의 내화성능 평가)

  • Song, Young-Chan;Kim, Yong-Ro;Kim, Ook-Jong;Lee, Do-Bum
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2009.11a
    • /
    • pp.97-100
    • /
    • 2009
  • Fire resistance properties and mechanical properties of high strength concrete mock-up column using organic fiber by KS F 2257 Methods of fire resistance test for elements of building construction and compression test was investigated for application of precast concrete column method of high rise building in this study. As a test result, it was appeared that ECC permanent form is available as fire resistance method of high strength concrete and new precast concrete construction method for facilitating construction of high rise building.

  • PDF

The combustion test of assuming in parking space for fire resistance (지하주차장의 내화성능 평가를 위한 차량연소실험)

  • Kang, Seung Goo;Kim, Dong Jun;Lee, Jae Young;Harada, Kazunori;Kwon, Young Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.05a
    • /
    • pp.48-50
    • /
    • 2013
  • In this study, Car fire for test using ISO 9705 10MW Large Scale Calorimeter. Especially, study on the underground parking for the fire resistance performance. The underground parking lot of the fire resistance regulations in according to with the standard heating curve in Korea. Because of this burning car through experiments to the propose a new heating curve.

  • PDF

Evaluation for fire resistance performance of high strength CFT with loading (재하하중에 따른 고강도 CFT의 내화성능 평가)

  • Hong, Seok-Beom;Yoo, Jo-hyeong;Kim, Woo-Jae;Lee, Ji-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.184-185
    • /
    • 2013
  • Concrete filled steel Tube(CFT) columns have great strength but also fire resistance performance due to the heat storage effect of concrete. In this research, we focus on the fire performance of CFT using 100 MPa concrete without fire protection. We use steel fiber and nylon fiber for fire resistance. We perform the fire test of CFT specimen with loading 200, 300 and 400 ton. To investigate the effect of loading to fire resistance, we compare the fire resistance time according to the loading.

  • PDF