• Title/Summary/Keyword: Fire gases

Search Result 207, Processing Time 0.032 seconds

A Study on the Fire Safety Management measures from during a fire toxic gases generated (Focus to Co gas measures) (화재시 생성된 유독가스로부터의 소방 안전관리 방안 연구(Co 가스 대책을 중심으로))

  • Kim, Byeong-Seok;Jang, Byeong-Jip;Choe, Man-Cheol
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2011.11a
    • /
    • pp.55-66
    • /
    • 2011
  • Recently developed a variety of architectural interior decoration according hwadoeme type of toxic gases generated during fire also are becoming diversified, resulting in fatal casualties occurred in the trend is also being increased. During a fire, toxic gas that is generated varies depending on the combustible material occurs. However, all combustible materials, including carbon, incomplete combustion of carbon monoxide which is generated in the most common toxic gases can be seen as one. Accordingly, in this study of organic solids that are generated in case of fire toxic gases, and briefly discuss the characteristics of the risks and, by far the most common Co gas for measures to prevent human casualties, seolbijeok, the temperature dependence, divided into four aspects of administrative daechaekdeung explained.

  • PDF

A study on the reaction mechanism on the harmful gases related to the human physiology caused by fire and panic phenomenon. (화재발생시의 유해가스의 반응 메카니즘과 패닉현상)

  • Yoon, Moung-Hoon;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.337-340
    • /
    • 2008
  • Smoke composed of harmful gases such as carbon monocide and carbon dioxide is reconized as the major killer in fire situation. Especailly it is said that smoke movement is related to the panic phenomenon which threatens the life seriously. The purpose of this study is to investgate and analyse the reaction mechanism of harmful gas caused by fire effects on the human psychology and panic phenomenon.

  • PDF

A study on the reaction mechanism on the harmful gases related to the human physiology caused by fire and panic phenomenon(II) (화재발생시의 유해가스의 반응 메카니즘과 패닉현상(II))

  • Yoon, Moung-Hoon;Lee, Jae-Won;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.502-506
    • /
    • 2008
  • Smoke composed of harmful gases such as carbon monocide and carbon dioxide is reconized as the major killer in fire situation. Especailly it is said that smoke movement is related to the panic phenomenon which threatens the life seriously. The purpose of this study is to investgate and analyse the reaction mechanism of harmful gas caused by fire effects on the human psychology and panic phenomenon.

  • PDF

A Study on Characteristics of Fire Temperature and Concentration of Toxic Gases while the Door Opening or Closed on Multi-layered Construction (복층건물의 출입문 개방여부에 따른 화재온도분포 및 독성가스 농도 변화특성에 관한 연구)

  • Lee, Jungyun;Kim, Jeonghun;Kim, Eungsik;Kim, Hong
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.2
    • /
    • pp.72-77
    • /
    • 2017
  • In S. Korea, recently, building fire accidents of residential accommodations or recreational facilities have taken place more frequently than before. Among various building constructions, Multi-layered structure, such as office-residential complex, are mostly made in S. korea. $O_2$, $CO_2$, CO, $NO_x$, $SO_x$, and HCl, these gases has toxic hazard and harmful for human body. And it is predicted that different concentration of released gases from diesel pool fire with upper and lower layer. Therefore, this study reports the fire characteristics of Multi-layered structure by analyzing the fire behavior and concentration of combustion gases of a experimental compartment via real scale fire experiment, in order to predict risks and secure safety for similar fire accidents.

A Study on Carbon Monoxide and Other Gases During the Fire Test (A-class:1st Rating & B-class:1st Rating) (한국 A급, B급 1단위 화재 시험시 발생하는 일산화탄소 등의 정량적 연구)

  • Jeong, Incheon;Chung, Yeong-Jin
    • Fire Science and Engineering
    • /
    • v.27 no.5
    • /
    • pp.44-56
    • /
    • 2013
  • This research is to identify how much toxic combustion gases are produced from Korea standardized real fire test (Class A&B) by using Room Corner Tester (RCT) and how much those gases are possibly dangerous to testing personnel by estimating the level of carboxyhemoglobin (% COHb). It is confirmed that testing personnel can be affected as more than 40% COHb from Class A 9th and 10th rating in respiration minute volume (RMV) 2 and from Class A 5th to Class A 10th rating in RMV 3 during the time for initial three minutes. Also, in the case of Class B real fire tests, although it is considered rather safe for the initial 1 minute, testing personnel can be affected as more than 20% COHb from Class B 16th to 20th rating in RMV 3 during total test time. Currently, the Korea standard is only focusing on the protection measures against the heat, but the it is neglecting the protection measures against toxic combustion gases. Therefore, according to this study, it is strongly recommended that testing personnel should wear a self-contained breathing apparatus, or the equivalence depending on the real fire test rating.

Occurrence quantity comparison of the toxic gases of the railway car's gangway materials using a Smoke Density-Chamber (철도차량용 통로연결막 재료별 독성성분의 발생량 비교)

  • Lee, Eun-Kyoung;Lee, Duck-Hee;Jung, Woo-Sung
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.1533-1539
    • /
    • 2007
  • It is mainly due to the toxic gases, produced from the material combustion, threatens human body in case of urban railway car like subway which passes through underground tunnel. In the field of railway industry, fire accidents was not frequent but occurs in each country and, the causes was investigated. The advanced country established the test standard (e.g., BS, EN) to measure the toxic gases quantitatively and, have applied to enhance the fire safety of railway car. We must also follow the procedures to use gangway material for railway car as stated the Safety regulation for the urban railway car. In this study, various gangway materials(silicon, synthtic rubber, soaltapulin) are used to investigate element of toxic gases when the fire occurs. The amount of toxic gases measured from the ISO 5659 chamber using cone heater was measured and compared the results for each materials.

  • PDF

The Experimental Study on the Toxic Gases Released from the Floor Finishing Materials in Entertainment Service Industry Buildings (다중이용시설 바닥마감재의 연소가스 독성평가에 관한 실험 연구)

  • 강성동;이창우;현성호;윤명오
    • Fire Science and Engineering
    • /
    • v.16 no.2
    • /
    • pp.14-21
    • /
    • 2002
  • The several floor finishing materials that widely used in entertainment service industry buildings were evaluated according to the method of NES 713. Also, toxic gases of floor finishing materials in combustion without air flow rate were checked as concentration of fire gases variation according to time using gas analyzer. We had estimated the smoke hazard of floor finishing materials in fire. As results of gas analyses using the method of NES 713, toxic index of samples was estimated range of 2~9.7. Therefore, a large amount of toxic gases will release from a floor finishing materials fire and connoted great smoke hazard in fire.

Estimation of Biomass Loss and Greenhouse Gases Emissions from Surface Layer Burned by Forest Fire (산불로 인한 지표층 연소량 및 온실가스 배출량 추정)

  • Lee, Byungdoo;Youn, Ho Jung;Koo, Kyosang;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.101 no.2
    • /
    • pp.286-290
    • /
    • 2012
  • Globally, the forest fires are a significant contributor of carbon dioxide and other greenhouse gases in the atmosphere. In this study, fuel load consumed by forest fire and emission of green house gases were analysed in the surface layer. For this, remaining fuel was collected and weighed with the species (Japanese red pine, deciduous) and the forest fire types (surface fire, crown fire) in the 51 forest fires. 8,361 kg/ha fuel load was consumed in deciduous forest damaged by surface fire, and 8,055 kg/ha, 12,333 kg/ha in Japanese red pine burned by surface fire and crown fire. The combustion ratios were 78, 59, and 90%, respectively. 15,856 kg/ha the green house gases such as $CO_2$, $CH_4$, $CH_4$ in deciduous forest burned by surface fire was emitted and 14,834 kg/ha, 22,709 kg/ha in Japanese red pine burned by surface fire and crown fire.

A Study on the ways to minimize Casualties through a consideration of the CO gas generated during combustion (연소시 생성된 CO가스의 고찰을 통한 인명피해 최소화 방안에 관한 연구)

  • Choi, Man-Chul;Kim, Byung-Suk
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.133-140
    • /
    • 2013
  • Recently developed a variety of architectural interior decoration according hwadoeme type of toxic gases generated during fire also are becoming diversified, resulting in fatal casualties occurred in the trend is also being increased. During a fire, toxic gas that is generated varies depending on the combustible material occurs. However, all combustible materials, including carbon, incomplete combustion of carbon monoxide which is generated in the most common toxic gases can be seen as one. Accordingly, in this study of organic solids that are generated in case of fire toxic gases, and briefly discuss the characteristics of the risks and, by far the most common Co gas for measures to prevent human casualties, seolbijeok, the temperature dependence, divided into four aspects of administrative daechaekdeung explained.

COMPARISON OF THE FIRE SUPPRESSION PERFORMANCE OF HALON REPLACEMENT AGENTS

  • Kim, Andrew K.;Joseph Z. Su
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 1997.11a
    • /
    • pp.542-549
    • /
    • 1997
  • HFC-227ea and HCFC Blend A were evaluated using full-scale fire tests to obtain information on their fire suppression performance, drop-in capability, thermal decomposition products and physical behaviour of the agent such as its flow characteristics in the piping system. Also, full-scale tests were conducted with Halon 1301 to provide a basis for comparison. Halon 1301, at concentrations of 5% to 7.5%, showed effective total-flooding fire- extinguishing performance for all test scenarios. HFC-227ea, at a design concentration of 7.6% or higher, and HCFC Blend A, at a design concentration of 12%, extinguished all fires in the test facility, however, these agents produced higher concentrations of acid gases than Halon 1301. The quantity of the acid gases generated during fire suppression was dependent on agent concentration, agent discharge time, fire type and size as well as extinguishment time.

  • PDF