• Title/Summary/Keyword: First-Hop Last-Hop

Search Result 4, Processing Time 0.02 seconds

Relay of Remote Control Signal for Spacecraft in Deep Space via FHLH (FHLH를 매개로 한 심우주 우주선 원격 제어 신호 중계)

  • Koo, Cheol Hea;Kim, Hyungshin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.4
    • /
    • pp.295-301
    • /
    • 2020
  • When a spacecraft in deep space falls into an abnormal state, an emergency communication channel between ground and the spacecraft is essential in order to perform analysis to the cause of the anomaly, and to remedy the spacecraft from the distressed state. Because the recovery actions generally comprises of long and complicated sequences of commands, the transmission of the recovery commands may require a reliable and a delay tolerant networking technology based on bundle routing. While the delay tolerant networking protocol becomes a prominent method interfacing ground and space into a internet-like Solar system network because it can address the issues of the severe communication problems in deep space, the communication system on the spacecraft which based on space packet protocol cannot use the delay tolerant networking technology directly. So a community of the consultative committee for space data systems starts a discussion of the first-hop last-hop mechanism to establish a feasible concept and standardization. This paper presents an enhanced concept of the first-hop last-hop by applying it a virtual cislunar communication environment, and we believe this contributes to make a way applicable to an interoperable relay concept of the first hop last hop between the delay tolerant networking and space packet protocol standard.

An Efficient Group Key Distribution Mechanism for the Secure Multicast Communication in Mobile Ad Hoc Networks (이동 애드혹 네트워크에서 안전한 멀티캐스트 통신을 위한 효율적인 그룹 키 분배 방식)

  • Lim Yu-Jin;Ahn Sang-Hyun
    • The KIPS Transactions:PartC
    • /
    • v.13C no.3 s.106
    • /
    • pp.339-344
    • /
    • 2006
  • Secure delivery of multicast data can be achieved with the use of a group key for data encryption in mobile ad hoc network (MANET) applications based on the group communication. However, for the support of dynamic group membership, the group key has to be updated for each member joining/leaving and, consequently, a mechanism distributing an updated group key to members is required. The two major categories of the group key distribution mechanisms proposed for wired networks are the naive and the tree-based approaches. The naive approach is based on unicast, so it is not appropriate for large group communication environment. On the other hand, the tree-based approach is scalable in terms of the group size, but requires the reliable multicast mechanism for the group key distribution. In the sense that the reliable multicast mechanism requires a large amount of computing resources from mobile nodes, the tree-based approach is not desirable for the small-sized MANET environment. Therefore, in this paper, we propose a new key distribution protocol, called the proxy-based key management protocol (PROMPT), which is based on the naive approach in the small-sized MANET environment. PROMPT reduces the message overhead of the naive through the first-hop grouping from a source node and the last-hop grouping from proxy nodes using the characteristics of a wireless channel.

A Secure Cluster Formation Scheme in Wireless Sensor Networks (무선 센서 네트워크에서 안전한 클러스터 구성 방안)

  • Wang, Gi-Cheol;Cho, Gi-Hwan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.84-97
    • /
    • 2012
  • In wireless sensor networks, cluster structure brings on many advantages such as load balancing, energy saving, and distributed key management, and so on. To transform a physical network into the cluster structure, sensor nodes should invoke a cluster formation protocol. During the protocol operation, if some nodes are compromised and they do not conform to the protocol, an inconsistency of membership in a cluster happen. This splits the cluster and consequently increases the number of clusters and decreases the number of members in the cluster. In this paper, we propose a scheme which well copes with such a problem. First, our scheme generates two hop clusters where hop distance between any two nodes is at most two. Besides, our scheme employs verification of two hop distant nodes to prevent the cluster split induced by compromised nodes. Last, our scheme mainly employs broadcast transmissions to reduce energy consumption of nodes. Simulation results have proven that our scheme reduces the number of clusters and more secure and energy-efficient than other scheme.

Outage Probability of Two-Hop Relay Networks with Related Interference

  • Pan, Peisheng;Zheng, Baoyu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.8
    • /
    • pp.1786-1804
    • /
    • 2013
  • We consider a specific interference-limited wireless relay system that comprises several cooperation units (CUs) which are defined as a source and destination node pair with an associated relay node. In the wireless relay system, all source nodes simultaneously transmit their own signals and the relay node in each CU then forwards the received signal to the destination node, causing co-channel interference at both the relay node and the destination node in each CU. The co-channel interference at the relay node is closely related to that at the destination node in each CU. We first derive the end-to-end outage probability in a CU over Rayleigh slow-fading channels with interference for the decode-and-forward (DF) relaying strategy. Then, on the assumption that each CU is allocated with equal power we design an optimal power allocation between the source node and the relay node in each CU to minimize the outage probability of the investigated CU. At last, in the case that each CU is not allocated with equal power and the sum of their power is constrained, we present an optimal power allocation between CUs to minimize the sum of the outage probability of all CUs. The analytical results are verified by simulations.