• Title/Summary/Keyword: First-Order System Model

Search Result 1,303, Processing Time 0.04 seconds

Effects of the time delay on the stability of a virtual wall model with a first-order-hold method (시간지연에 의한 일차홀드 방식을 포함하는 가상벽 모델의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.17-21
    • /
    • 2014
  • This paper presents the effects of the time delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a time delay model. In this paper, the time delay is considered as the computational time delay that is assumed to be as much as the sampling time. As the time delay increases, the maximal available stiffness of a virtual wall model is reduced reversely. The relation among the time delay and the maximum available stiffness, the mass and the damper of the haptic device are analyzed using the MATLAB simulation.

Analysis for the Stability of a Haptic System with the Computational Time-varying Delay (가변적인 계산시간지연에 의한 햅틱 시스템에서의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.37-42
    • /
    • 2015
  • This paper presents the effects of the computational time-varying delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a computational time-varying delay model. In this paper, the maximum of the computational time-varying delay is assumed to be as much as the sampling time. Using the simulation, it is analyzed how the sample-hold methods and the computational time-varying delay affect the maximum available stiffness. As the maximum of computational time-varying delay increases, the maximal available stiffness of a virtual wall model is reduced.

Effects of a Human Impedance and a First-Order-Hold Method on Stability of a Haptic System with a Virtual Spring Model (인간 모델과 1차 샘플-홀드 방식이 가상 스프링 모델 시스템의 안정성에 미치는 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.2
    • /
    • pp.23-29
    • /
    • 2013
  • When a human operator interacts with a virtual wall that is modeled as a virtual spring model, the lager the stiffness of the virtual spring is, the more realistic the operator feels that the virtual wall is. In the previous studies, it is shown that the maximum available stiffness of a virtual spring to guarantee the stability can be increased when the first-order-hold method is applied, however the effects of a human impedance on the stability are not considered. This paper presents the effects of a human impedance on stability of haptic system with a virtual spring and a first-order-hold (FOH) method. The human impedance model is modeled as a linear second-order system model. The relations between the maximum available stiffness of a virtual spring and the human impedance such as a mass, a damping and a stiffness are analyzed through the MATLAB simulation. It is shown that the maximum available stiffness is proportional to the square root of the human mass or damping respectively.

  • PDF

Vibration suppression of flexible structures using optimal model following control scheme (최적 모델추종 제어기법을 이용한 유연 구조물 진동 억제에 관한 연구)

  • 양철호;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.931-936
    • /
    • 1993
  • Optimal model following control scheme is to design the controller which makes the response of real system follow that of desirable model. This kind of design scheme is developed for first order system. We extends the scheme for second order system regarding the characteristics of mechanical second order system for vibration suppression of flexible structures. The model of mechanical second order system is obtained using suitable damping ratios and natural frequencies. Using this scheme, we can design the good controller which uses the characteristic of second order system. Numerical examples are presented which were used optimal model following control scheme.

  • PDF

A Study on the Effect of First-order Hold Method on the Stability Boundary of a Virtual Mass-spring Model (일차-홀드 방법이 가상 질량-스프링 모델의 안정성 영역에 미치는 영향에 대한 연구)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.10 no.1
    • /
    • pp.41-45
    • /
    • 2020
  • This paper presents the effects of a virtual mass on the stability boundary of a virtual spring in the haptic system with first-order-hold. The virtual rigid body is modeled as a virtual spring and a virtual mass. When first-order-hold is applied, we analyze the stability boundary of the virtual spring through the simulation according to the virtual mass and the sampling time. As the virtual mass increases, the stability boundary of the virtual spring gradually increases and then decreases after reaching the maximum value. The results are compared with the stability boundary in the haptic system with zero-order-hold. When a virtual mass is small, the stability boundary of a virtual spring in the system with first-order-hold is larger than that in the system with zero-order-hold.

Comparison of global models for calculation of accurate and robust statistical moments in MD method based Kriging metamodel (크리깅 모델을 이용한 곱분해 기법에서 정확하고 강건한 통계적 모멘트 계산을 위한 전역모델의 비교 분석)

  • Kim, Tae-Kyun;Lee, Tae-Hee
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.678-683
    • /
    • 2008
  • Moment-based reliability analysis is the method to calculate reliability using Pearson System with first-four raw moments obtained from simulation model. But it is too expensive to calculate first four moments from complicate simulation model. To overcome this drawback the MD(multiplicative decomposition) method which approximates simulation model to kriging metamodel and calculates first four raw moments explicitly with multiplicative decomposition techniques. In general, kriging metamodel is an interpolation model that is decomposed of global model and local model. The global model, in general, can be used as the constant global model, the 1st order global model, or the 2nd order global model. In this paper, the influences of global models on the accuracy and robustness of raw moments are examined and compared. Finally, we suggest the best global model which can provide exact and robust raw moments using MD method.

  • PDF

Deduction of a Simplified Model for the Hydraulic Actuator for a Low-band Type Suspension System (능동제어식 현가계의 유압 구동장치에 대한 단순화 모델 유도)

  • 김동윤;홍예선;박영필
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.4
    • /
    • pp.27-38
    • /
    • 1994
  • In this paper, a simplified model of a hydraulic actuator system for a low-band type active suspension system is derived. To reduce the order of model, time constants of each chamber in hydraulic system are neglected except that of an accumulator. And the dynamics of a spool in the pressure control valve is regarded as a first-order system. The step response and the frequency response of the simplified second-order simulation model exhibit a good agreement with those of the actual system as well as those of the tenth-order simulation model. It is possible to simplify the tenth-order model to the second-order one. The low-band type active suspension model is built up by combining of a quarter car model test rig to testify the validity of the simplified model. The experimental results of suspension characteristics show that the simplified second-order hydraulic actuator model is reasonable to describe the dynamics of the actual hydraulic actuator system for a low-band type active suspension system.

  • PDF

System Identification and Damage Estimation via Substructural Approach

  • Tee, K.-F.;Koh, C.-G.;Quek, S.-T.
    • Computational Structural Engineering : An International Journal
    • /
    • v.3 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • For system identification of large structures, it is not practical to identify the entire structure due to the prohibitive computational time and difficulty in numerical convergence. This paper explores the possibility of performing system identification at substructure level, taking advantage of reduction in both the number of unknowns and the number of degrees of freedom involved. Another advantage is that different portions (substructures) of a structural system can be identified independently and even concurrently with parallel computing. Two substructural identification methods are formulated on the basis whether substructural approach is used to obtain first-order or second-order model. For substructural first-order model, identification at the substructure level will be performed by means of the Observer/Kalman filter Identification (OKID) and the Eigensystem Realization Algorithm (ERA) whereas identification at the global level will be performed to obtain second-order model in order to evaluate the system's stiffness and mass parameters. In the case of substructural second-order model, identification will be performed at the substructure level throughout the identification process. The efficiency of the proposed technique is shown by numerical examples for multi-storey shear buildings subjected to random forces, taking into consideration the effects of noisy measurement data. The results indicate that both the proposed methods are effective and efficient for damage identification of large structures.

  • PDF

Level control of single water tank systems using Fuzzy-PID technique

  • Lee, Yun-Hyung;Jin, Gang-Gyoo;So, Myung-Ok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.5
    • /
    • pp.550-556
    • /
    • 2014
  • In this study, for the control of a single water tank system, a fuzzy-PID controller design technique based on a fuzzy model is investigated. For this purpose, a water tank system is linearized as a number of submodels depending on the operating point, and a fuzzy model is obtained by fuzzy combining. Each submodel is approximated as a first order time delay model, and a PID controller is designed using several existing tuning techniques. Then, through the fuzzy combination of this controller using the same method as that of the fuzzy model, a fuzzy-PID controller is designed. For the proposed technique, a simulation is performed using the fuzzy model of a water tank system, and the validity is examined by comparing its performance with that of a PID controller.

Zeroth-Order Shear Deformation Micro-Mechanical Model for Periodic Heterogeneous Beam-like Structures

  • Lee, Chang-Yong
    • Journal of Power System Engineering
    • /
    • v.19 no.3
    • /
    • pp.55-62
    • /
    • 2015
  • This paper discusses a new model for investigating the micro-mechanical behavior of beam-like structures composed of various elastic moduli and complex geometries varying through the cross-sectional directions and also periodically-repeated along the axial directions. The original three-dimensional problem is first formulated in an unified and compact intrinsic form using the concept of decomposition of the rotation tensor. Taking advantage of two smallness of the cross-sectional dimension-to-length parameter and the micro-to-macro heterogeneity and performing homogenization along dimensional reduction simultaneously, the variational asymptotic method is used to rigorously construct an effective zeroth-order beam model, which is similar a generalized Timoshenko one (the first-order shear deformation model) capable of capturing the transverse shear deformations, but still carries out the zeroth-order approximation which can maximize simplicity and promote efficiency. Two examples available in literature are used to demonstrate the consistence and efficiency of this new model, especially for the structures, in which the effects of transverse shear deformations are significant.