• Title/Summary/Keyword: Flank Wear

Search Result 161, Processing Time 0.027 seconds

Wear of Partially Coated Tool in Interrupted Cutting (부분 피복된 HSS 공구의 단속절삭시의 마멸)

  • 김동욱;조용주;지용권;류병진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.67-72
    • /
    • 1994
  • Tool test was conducted to investigate the were process of only flank face TiN coated HSS tool in interrupted cutting for variuos cutting speeds and feed rates. Flank wear was caused by microchipping at the cutting edge. At high cutting speed, the which was formed as a result of diffusion and abrasion lowered cutting edge and influenced flank were. Flank wear due to chipping was little influenced by cutting speed.

  • PDF

A study on the cutting characteristics of SUS304 by flank wear (Flank 마모에 의한 SUS304의 절삭특성에 관한 연구)

  • Yu, Ki-Hyun;Cheong, Chin-Yong;Seo, Nam-Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.182-188
    • /
    • 1994
  • This expermintal study is intended to investigate he development of flank wear in turning os SUS304 which is used in industrial applications and is acknowledged as a machining difficult material. In cutting process, change of velocity, change of feed, and change of depth of cut were investigated about the effect of flank wear, and slenderness ratio is also investigated. The variations of unit cutting force with the change of rake angle and the change of uncut chip area are observed. The friction angles are calculated for the change friction force and observed. The friction angles are calculated for the change friction force and normal forcd on the different rake angles. From this experimental study, the following results can be said. 1. Under the high cutting speed condition, the flaank wear is affected by the feed and depth of cut, but the influence of feed and depth of cut to the flank wear is reduced when the velocity is low. 2. The smaller slenderness ratio is, the shorter the tool life results in high cutting speed, and the lower cutting speed is, the lower the effect of slenderness ratio to the flank wear is. 3. Using the characteristics of force-RMS, the flank wear of a tool can be detected. There are almost no differences between the RMS characteristics of cutting force and feed force.

  • PDF

Fuzzy estimation of minor flank wear in face milling (면삭밀링가공시 공구 부절삭날 마모길이의 퍼지적 평가)

  • Ko, Tae Jo;Cho, Dong Woo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.4
    • /
    • pp.28-38
    • /
    • 1995
  • The flank wear at the minor cutting edge significantly affects the geometric accuracy and surface roughness in finish machining. A fuzzy estimator based on a fuzzy inference algorithm with a max-min composition rule is introduced to evaluate the minor flank wear length. The features sensitive to minor flank wear are extracted from the dispersion analysis of a time series AR model of the feed directional acceleration signal. These features, dispersions, are used for constructing linguistic rules, and then the fuzzy inferences are carried out with test data sets collected under various cutting conditions. The proposed system turns out to be effective for estimating minor flank wear length.

  • PDF

A Study on the Behaviors of Acoustic Emission Signals and Cutting Forces by Flank Wear in Turing Process (선삭가공시 플랭크 마모에 따른 AE 신호와 절삭력의 거동에 관한 연구 1)

  • Cho, Jong-Rae;Won, Jong-Sik;Jung, Youn-Gyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.1 s.94
    • /
    • pp.26-33
    • /
    • 1999
  • Automatic monitoring of cutting process is one of the most important technologies for increasing the stability and the reliability of unmanned manufacturing system. In this study, basic methods which use the acoustic emission (AE) signals and cutting forces were proposed to monitor flank wear (width of flank wear) quantiatively. First, in order to detect flank wear, it was investigated that the influence of cutting conditions, that is, cutting velocity, feed and depth of cut, on AE signals (${AE_rms}$) and cutting forces. Furthermore, the relation between flank wear and the measured signals (${AE_rms}$, cutting force) was discussed.

  • PDF

In-Process Detection of Flank Wear Width by AE Signals When Machining of ADI (ADI 절삭시 AE신호에 의한 플랭크 마멸폭의 인프로세스 검출)

  • 전태옥
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.8 no.6
    • /
    • pp.71-77
    • /
    • 1999
  • Monitoring of Cutting tool wear is a critical issue in automated machining system and has been extensively studied for many years. An austempered ductile iron(ADI) exhibits the excellent mechanical properties and the wear resistance. ADI has generally the poor machinability due to the characteristic. This paper presents the in-process detection of flank wear of cutting tools using the acoustic emission sensor and the digital oscilloscope. The amplitude level of AE signal(AErms) is mainly affected by cutting speed and it is proportional to cutting speed. There have been the relationship of direct proportion between the amplitude level of AE signals and the flank wear width of cutting tool. The flank wear with corresponding to the tool life is successfully detected with the monitor-ing system used in this study.

  • PDF

Turning Characteristics of differential materials (이종 금속의 선삭 가공 특성에 관한 연구)

    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.7 no.3
    • /
    • pp.43-50
    • /
    • 1998
  • In the use of CNC machine tool, the unmanned production system has been growing in the manufacturing field. Thus, it is necessary to monitor adequate tool fracture during the cutting process efficiently. This experimental study is intended to investigate the development of flank wear in sysnchronous turning of differential materials(Aℓ/GC) which is used in industrial application and it is acknowledged as a machine to difficult material. In cutting process change of velocity, change of feed, and change of depth of cut were investigated on the effect of flank wear, and slenderness ratio is also investigated. The conclusions of this paper are summarized as follows; 1.Under the high cutting speed condition, the flank wear is affected by the feed and depth of cut. but the influence of feed on the flank wear is larger than the depth of cut and that is reduced when the velocity is low. 2.Under the high cutting speed, as the smaller slenderness ratio is, the shorter tool life is under the lower cutting speed, the effect of slenderness ratio on the flank wear is low. 3.Using the characteristics of cutting force, the flank wear of a tool can be detected 4. Investigating the development of flank wear, there are almost no differences between the characteristics of cutting force and feed force. Finally, these data from the differntial materials cutting process will be used in the basic field of precision and economic cutting process.

  • PDF

A Study on the Flank Wear of Carbide Tool in Machining SUS304 (SUS304 절삭시 Carbide 공구의 Crater 마모에 관한 연구)

  • Jeong, Jin-Yong;O, Seok-Hyeong;Kim, Jong-Taek;Seo, Nam-Seop
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.44-54
    • /
    • 1991
  • A Study was made on falnk wear in carbide tools in turning SUS304 steel. When an austenitic stainless steel (SUS304 steel) is cut with the tool, saw-toothed chip are produced. It is found that machining SUS304 steel would make a tool worn fast. For increasing productivity, tool wear has to be predicted and controlled. An amended cutting geometry consisting of a negative rake angle ($-6^{\circ}$ ) and a high clearance angle ($-17^{\circ}$ ) is proposed for decreasing carbide tool wear (flank) in the machining of SUS304 steel. The amended cutting geometry is found to make the flank wear lower than a general cutting geometry (rake angle $6^{\circ}$ , clearance angle $5^{\circ}$). The effects of the three cutting variables (cutting speed, feed, tool radius) on the flank wear analyzed by fiting a simple first-order model containing interaction terms to each flank wear parameter by means of regression analysis and the predicted from first-order regression analysis model equation of flank wear.

  • PDF

The Automated Measurement of Tool Wear using Computer Vision (컴퓨터 비젼에 의한 공구마모의 자동계측)

  • Song, Jun-Yeop;Lee, Jae-Jong;Park, Hwa-Yeong
    • 한국기계연구소 소보
    • /
    • s.19
    • /
    • pp.69-79
    • /
    • 1989
  • Cutting tool life monitoring is a critical element needed for designing unmanned machining systems. This paper describes a tool wear measurement system using computer vision which repeatedly measures flank and crater wear of a single point cutting tool. This direct tool wear measurement method is based on an interactive procedure utilizing a image processor and multi-vision sensors. A measurement software calcultes 7 parameters to characterize flank and crater wear. Performance test revealed that the computer vision technique provides precise, absolute tool-wear quantification and reduces human maesurement errors.

  • PDF

A Study of New Wuick Tool-Life Tesing Method(I) - The Analysis of the Wear Behavior for Carbide Tool - (새로운 급속 工具壽命試驗法에 관한 硏究 (I) - 초경공구의 유동거동 분석-)

  • 오양균;정동윤
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.10 no.2
    • /
    • pp.223-231
    • /
    • 1986
  • During the past decade, the Quick Tool-Life Testing Method has been studied. However, a generalized theory and testing method for the quantitative measurement of tool wear have not been developed yet. Among many factors to affect the tool wear, the flank wear is regarded as a main factor. In this study, the behavior of the flank wear for carbide tool was studied as a preceding step to present a simple method for Quick Tool-Life Testing, and it was found that the flank wear varies in direct proportion to cutting time, and the following general equation is obtained for the flank wear curves with respect to cutting time and velociety.

Detection of Tool Wear using Cutting Force Measurement in Turning (선삭가공에서 절삭력을 이용한 공구마멸의 감지)

  • 윤재웅;이권용;이수철
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.68-75
    • /
    • 2000
  • The development of flexible automation in the manufacturing industry is concerned with production activities performed by unmanned machining system. A major topic relevant to metal-cutting operations is monitoring tool wear, which affects process efficiency and product quality, and implementing automatic tool replacements. In this paper, the measurement of the cutting force components has been found to provide a method for an in-process detection of tool wear. Cutting force components are divided into static and dynamic components in this paper, and the static components of cutting force have been used to detect flank wear. To eliminate the influence of variations in cutting conditions, tools, and workpiece materials, the force modeling is performed for various cutting conditions. The normalized force disparities are defined in this paper, and the relationships between normalized disparity and flank wear are established. Finally, Artificial neural network is used to learn these relationships and detect tool wear. According to the proposed method, the static force components could provide the effective means to detect flank wear for varying cutting conditions in turning operation.

  • PDF