• Title/Summary/Keyword: Flash Translation Layer

Search Result 91, Processing Time 0.026 seconds

A Clustered Flash Translation Layer for Mobile Storage Systems (휴대용 저장장치 시스템을 위한 Clustered Flash Translation Layer)

  • Park, Kwang-Hee;Kim, Deok-Hwan
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.3
    • /
    • pp.94-100
    • /
    • 2008
  • It is necessary to develop the flash memory system software FTL(Flash Translation Layer) which is used in mobile storage like Compact Flash memory. In this paper, we design the FTL using clustered hash table and two phase software caching method to translate logical address into physical address fastly. The experimental results show that the address translation performance of CFTL is 13.3% higher than that of NFTL and 8% higher than that of AFTL, and the memory usage of CFTL is 75% smaller than that of AFTL.

An Efficient System Software of Flash Translation Layer for Large Block Flash Memory (대용량 플래시 메모리를 위한 효율적인 플래시 변환 계층 시스템 소프트웨어)

  • Chung Tae-Sun;Park Dong-Joo;Cho Sehyeong
    • The KIPS Transactions:PartA
    • /
    • v.12A no.7 s.97
    • /
    • pp.621-626
    • /
    • 2005
  • Recently, flash memory is widely used in various embedded applications since it has many advantages in terms of non-volatility, fast access speed, shock resistance, and low power consumption. However, it requires a software layer called FTL(Flash Translation Layer) due to its hardware characteristics. We present a new FTL algorithm named LSTAFF(Large State Transition Applied Fast flash Translation Layer) which is designed for large block flash memory The presented LSTAFF is adjusted to flash memory with pages which are larger than operating system data sector sizes and we provide performance results based on our implementation of LSTAFF and previous FTL algorithms using a flash simulator.

An Efficient FTL Algorithm for Flash Memory (플래시 메모리를 위한 효율적인 사상 알고리즘)

  • Chung Tae-Sun;Park Hyung-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.9
    • /
    • pp.483-490
    • /
    • 2005
  • Recently, flash memory is widely used in embedded applications since it has strong points: non-volatility, fast access speed, shock resistance, and low power consumption. However, due to its hardware characteristics, it requires a software layer called FTL(flash translation layer). The main functionality of FTL is to convert logical addresses from the host to physical addresses of flash memory We present a new FTL algorithm called STAFF(State Transition Applied Fast Flash Translation Layer). Compared to the previous FTL algorithms, STAFF shows five times higher performance than basic block mapping scheme and requires less memory. We provide performance results based on our implementation of STAFF and previous FTL algorithms.

Efficient Prefetching and Asynchronous Writing for Flash Memory (플래시 메모리를 위한 효율적인 선반입과 비동기 쓰기 기법)

  • Park, Kwang-Hee;Kim, Deok-Hwan
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.2
    • /
    • pp.77-88
    • /
    • 2009
  • According to the size of NAND flash memory as the storage system of mobile device becomes large, the performance of address translation and life cycle management in FTL (Flash Translation Layer) to interact with file system becomes very important. In this paper, we propose the continuity counters, which represent the number of continuous physical blocks whose logical addresses are consecutive, to reduce the number of address translation. Furthermore we propose the prefetching method which preloads frequently accessed pages into main memory to enhance I/O performance of flash memory. Besides, we use the 2-bit write prediction and asynchronous writing method to predict addresses repeatedly referenced from host and prevent from writing overhead. The experiments show that the proposed method improves the I/O performance and extends the life cycle of flash memory. As a result, proposed CFTL (Clustered Flash Translation Layer)'s performance of address translation is faster 20% than conventional FTLs. Furthermore, CFTL is reduced about 50% writing time than that of conventional FTLs.

A Compact Representation of Translation Pages for Flash Translation Layers of Solid State Drives

  • Kim, Yong-Seok
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.2
    • /
    • pp.1-7
    • /
    • 2019
  • This paper presents CTP (Compact Translation Page), a compact representation of translation pages, for page mapping-based flash translation layers to improve RAM utilization and reduce the response time of solid state drives. CTP can store translation information twice in a translation page and the total number of translation pages stored in flash is reduced to half. Therefore, CTP halves the RAM size of the directory of translation pages and uses the saved RAM space for translation cache. CTP shows the best response time when compared to existing page mapping-based flash translation layers.

Design of NAND Flash Translation Layer Based on Valid Page Lookup Table (유효 페이지 색인 테이블을 활용한 NAND Flash Translation Layer 설계)

  • 신정환;이인환
    • Proceedings of the IEEK Conference
    • /
    • 2003.11b
    • /
    • pp.15-18
    • /
    • 2003
  • Flash memory becomes more important for its fast access speed, low-power, shock resistance and nonvolatile storage. But its native restrictions that have limited 1ifetime, inability of update in place, different size unit of read/write and erase operations need to managed by FTL(Flash Translation Layer). FTL has to control the wear-leveling, address mapping, bad block management of flash memory. In this paper, we focuses on the fast access to address mapping table and proposed the way of faster valid page search in the flash memory using the VPLT(Valid Page Lookup Table). This method is expected to decrease the frequency of access of flash memory that have an significant effect on performance of read and block-transfer operations. For the validations, we implemented the FTL based on Windows CE platform and obtained an improved result.

  • PDF

Design and Implementation of an Efficient FTL for Large Block Flash Memory using Improved Hybrid Mapping (향상된 혼합 사상기법을 이용한 효율적인 대블록 플래시 메모리 변환계층 설계 및 구현)

  • Park, Dong-Joo;Kwak, Kyoung-Hoon
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 2009
  • Flash memory is widely used as a storage medium of mobile devices such as MP3 players, cellular phones and digital cameras due to its tiny size, low power consumption and shock resistant characteristics. Currently, there are many studies to replace HDD with flash memory because of its numerous strong points. To use flash memory as a storage medium, FTL(Flash Translation Layer) is required since flash memory has erase-before-write constraints and sizes of read/write unit and erase unit are different from each other. Recently, new type of flash memory called "large block flash memory" is introduced. The large block flash memory has different physical structure and characteristics from previous flash memory. So existing FTLs are not efficiently operated on large block flash memory. In this paper, we propose an efficient FTL for large block flash memory based on FAST(Fully Associative Sector Translation) scheme and page-level mapping on data blocks.

Efficient OFTL (Octree Flash Translation Layer) Technique for 3-D Vertical NAND Flash Memory (3차원 수직구조 NAND 플래시 메모리를 위한 효율적인 OFTL (Octree Flash Translation Layer) 기법)

  • Kim, Seung-Wan;Kim, Hun;Youn, Hee-Yong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2014.07a
    • /
    • pp.227-229
    • /
    • 2014
  • 플래시 메모리는 빠른 처리 속도, 비휘발성, 저 전력, 강한 내구성 등으로 인해 최근 스마트폰, 태블릿, 노트북, 컴퓨터와 같은 여러 분야에서 많이 사용하고 있다. 최근 기존에 사용하던 NAND 플래시가 미세화 기술의 한계에 봉착함에 따라 기존 2차원 구조의 NAND플래시를 대처할 장치로 3차원 수직구조 NAND 플래시 메모리(3D Vertical NAND)가 주목받고 있다. 기존의 플래시 메모리는 데이터를 효율적으로 삽입/삭제/검색하기 위해 B-tree와 같은 색인기법을 필요로 한다. 플래시 메모리 상에서 B-tree 구현에 관한 기존 연구로서는 BFTL(B-Tree Flash Translation Layer)기법이 최초로 제안되었다. 현재 3차원 V-NAND 구조의 플래시 메모리가 시작품으로 제작되어 머지않아 양산 될 예정이다. 본 논문에서는 향후 출시될 3차원 구조의 플래시 메모리에 적합한 Octree 기반의 파일시스템을 제안한다.

  • PDF

Design and Implementation of Flash Translation Layer with O(1) Crash Recovery Time (O(1) 크래시 복구 수행시간을 갖는 FTL의 설계와 구현)

  • Park, Joon Young;Park, Hyunchan;Yoo, Chuck
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.10
    • /
    • pp.639-644
    • /
    • 2015
  • The capacity of flash-based storage such as Solid State Drive(SSD) and embedded Multi Media Card(eMMC) is ever-increasing because of the needs from the end-users. However, if a flash-based storage crashes, such as during power failure, the flash translation layer(FTL) is responsible for the crash recovery based on the entire flash memory. The recovery time increases as the capacity of the flash-based storages increases. We propose O1FTL with O(1) crash recovery time that is independent of the flash capacity. O1FTL adopts the working area technique suggested for the flash file system and evaluates the design on a real hardware platform. The results show that O1FTL achieves a crash recovery time that is independent of the capacity and the overhead, in terms of I/O performance, and achieves a low P/E cycle.

Implementation of Memory Efficient Flash Translation Layer for Open-channel SSDs

  • Oh, Gijun;Ahn, Sungyong
    • International journal of advanced smart convergence
    • /
    • v.10 no.1
    • /
    • pp.142-150
    • /
    • 2021
  • Open-channel SSD is a new type of Solid-State Disk (SSD) that improves the garbage collection overhead and write amplification due to physical constraints of NAND flash memory by exposing the internal structure of the SSD to the host. However, the host-level Flash Translation Layer (FTL) provided for open-channel SSDs in the current Linux kernel consumes host memory excessively because it use page-level mapping table to translate logical address to physical address. Therefore, in this paper, we implemente a selective mapping table loading scheme that loads only a currently required part of the mapping table to the mapping table cache from SSD instead of entire mapping table. In addition, to increase the hit ratio of the mapping table cache, filesystem information and mapping table access history are utilized for cache replacement policy. The proposed scheme is implemented in the host-level FTL of the Linux kernel and evaluated using open-channel SSD emulator. According to the evaluation results, we can achieve 80% of I/O performance using the only 32% of memory usage compared to the previous host-level FTL.