• Title/Summary/Keyword: Flexible Manufacturing System

Search Result 496, Processing Time 0.022 seconds

Study of the Design Characteristics of Practical Flexible Manufacturing System (PFMS) (실용 자동화 실습장치 (Practical Flexible Manufacturing System)의 모듈별 사양 분석에 관한 연구)

  • Jo, Jang-Hyen
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.7 no.2
    • /
    • pp.193-198
    • /
    • 2004
  • This is the dissertation of the study of design characteristics about the practical flexible manufacturing system (PFMS). The basic ideas to analyze the manufacturing system which is the automatically operated is dependant on the various manufacturing procedures in factory. PFMS is the very useful equipment for students and trainee of production lines. This system is composed of hardware and software sub systems i.e. control and test unit and personal computer with software. The PFMS can be developed with design concepts and approved the capability of first article with functional tests. The PFMS module will be very useful for the manufacturing drill system in universities and practical fields. The flexible manufacturing systems have various subsystems appropriated for the final manufacturing products. Therefore the systems have the various kinds of hard wares as well as softwares. We study the software for the practical flexible manufacturing system designed in the Halla University and specially the design concept and using specification of the SCARA (Selective Compliance Assembly Robot Arm) robot which is used for the movement of the product is analyzed and introduced in this dissertation.

  • PDF

유연생산 시스템 모델플랜트 MASFLEX-NX의 개발

  • 성창민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1996.10a
    • /
    • pp.1-5
    • /
    • 1996
  • As the manufacturing system becomes more complicated and flexible there is a strong trend of having effective flexible manufacturing system in modern manufacturing. Furthermore it seems that competitiveness of an enterprise is dependent upon. to some extent the effectiveness of flexible manufacturing system.

  • PDF

Study of Design Characteristics of Flexible Manufacturing System for Practical Training (실습 자동화 생산 시스템 설계특성에 대한 연구)

  • Jo, Jang-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.9 s.174
    • /
    • pp.93-98
    • /
    • 2005
  • The purposes of this paper are the review and derivation of design characteristics for the new construction of the practical flexible manufacturing system. The basic ideas to analyze the manufacturing system which is the automatically operated are dependant on the various manufacturing procedures in factory. The practical flexible manufacturing systems have various mechanical subsystems appropriated fur the final manufacturing products. Therefore the systems have the various kinds of hardwares as well as softwares. We study the software for the practical flexible manufacturing system designed and developed in the Halla University with the related company. Specially the design concepts and using specifications of all subsystems which are composed of mechanical and electronic movements of the product are analyzed and introduced in this dissertation.

Study on Operation Model for Open Architecture Flexible Manufacturing Cell Controller (개방형 유연제조셀 제어기를 위한 오퍼레이션 모델에 관한 연구)

  • Choi, K.H.
    • Journal of Power System Engineering
    • /
    • v.4 no.4
    • /
    • pp.92-98
    • /
    • 2000
  • Modern manufacturing systems should cope with the frequent changes in a product model and disturbances in manufacturing process. The control system of such systems must cover a constant adaptation and high flexibility. Holonic Flexible Manufacturing Cell(HFMC) is introduced to handle these issues more successfully. It is based on the concept of autonomous co-operating agent, called 'Holon', which is a building block of a manufacturing system for transforming, transporting, storing and/or validating information and physical objects. In this paper the basic structure of the HFMC is represented by using Unified Modeling Language and Open architecture cell controller is developed for effective integration components of a manufacturing system. Also a new control model, called MuLOM(Multi-Layered Operation Model), is suggested to represent the control behaviour for a holonic flexible manufacturing cell control system.

  • PDF

Development of Flexible Manufacturing System using Virtual Manufacturing Paradigm

  • Kim, Sung-Chung;Park, Kyung-Hyun
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.1 no.1
    • /
    • pp.84-90
    • /
    • 2000
  • The importance of Virtual Manufacturing System is increasing in the area of developing new manufacturing processes, implementing automated workcells, designing plant facility layouts and workplace ergonomics. Virtual manufacturing system is a computer system that can generate the same information about manufacturing system structure, states, and behaviors as is observed in a real manufacturing. In this research, a virtual manufacturing system for flexible manufacturing cells (VFMC), (which is a useful tool for building Computer Integrated Manufacturing (CIM), has been developed using object-oriented paradigm, and implemented with software QUEST/IGRIP. Three object models used in the system are the product model, the facility model, and the process model. The concrete behaviors of a flexible manufacturing cell are re[presented by the task-oriented description diagram, TIC. An example simulation is executed to evaluate applicability of the developed models, and to prove the potential value of virtual manufacturing paradigm.

  • PDF

Process Management Systems for Integrated Real-Time Shop Operations in Heterogeneous Multi-Cell Based Flexible Manufacturing Environment (이기종 멀티 셀 유연생산환경에서의 실시간 통합운용을 위한 공정관리 체계)

  • Yoon, Joo-Sung;Nam, Sung-Ho;Baek, Jae-Yong;Kwon, Ki-Eok;Lee, Dong-Ho;Lee, Seok-Woo
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.2
    • /
    • pp.281-286
    • /
    • 2013
  • As the product lifecycle is getting shorter and various models should be released to respond to the needs of customers and markets, automation-based flexible production line has been recognized as the core competitiveness. According to these trends, system vendors supply cell-level systems such as FMC(Flexible Manufacturing Cell) that is integration of core functions of FMS(Flexible Manufacturing System) and RMC(Reconfigurable Manufacturing Cell) that can easily extend components of FMC. In the cell-based environment, flexible management for shop floor composed of existing job shop, FMCs and RMCs from various system vendors has emerged as an important issue. However, there could be some problems on integrated operation between heterogeneous cells to use vendor-specific cell controllers and on seamless information flow with high level systems such as ERP(Enterprise Resource Planning). In this context, this paper proposes process management systems supporting integrated shop operation of heterogeneous multi-cell based flexible manufacturing environment: First of all, (1) Integrated Shop Operation System to apply the process management system is introduced, and (2) Multi-Layer BOP(Bill-Of-Process) model, a backbone of the process management system, is derived with its data structure. Finally, application of the proposed model is illustrated through system implementation results.

Design and Implementation of Nanoimprint Lithography System for Flexible Substrates (유연기판을 위한 나노임프린트리소그래피 시스템 설계)

  • Lim, Hyung-Jun;Lee, Jae-Jong;Choi, Kee-Bong;Kim, Gee-Hong;Ryu, Ji-Hyeong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.513-520
    • /
    • 2011
  • The NIL processes have been studied to implement low cost, high throughput and high resolution application. A RNIL(roller NIL) is an alternative approach to flat nanoimprint lithography. RNIL process is necessary to transfer patterns on flexible substrates. Compared with flat NIL, RNIL has the advantages of better uniformity, less pressing force, and the ability to repeat the patterning process continuously on a large substrate. This paper studies the design, construction and verification of a thermal RNIL system. The proposed RNIL system can easily adopt the flat shaped hot plate which is one of the most important technologies for NIL. The NIL system can be used to transfer patterns from a flexible stamp to a flexible substrate, from a flexible stamp to a Si substrate, and from a roller stamp to a flexible substrate, etc. Patterning on flexible substrates is one of the key technologies to produce bendable displays, solar cells and other applications.

A Study on the Computer Simulation for the System Layout of Flexible Manufacturing System (FMS의 구성설계를 위한 컴퓨터 시뮬레이션에 관한 연구)

  • Kim, Jang-Hyung;Kim, Chong-Eok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.6 no.3
    • /
    • pp.109-119
    • /
    • 1989
  • This paper discusses the system layout of flexible manufacturing system. A definition of flexible manufacturing system has not been necessarily classified yet. An understanding, and an objective of its application are different in a variety of industries. It could be treated as the system adopting flexble-Automation and FMS has been improving as a form of parts maching system. It was thought that the problems of machining function and transfer function were important. This paper introduces parts family and machine groups to increase machining function and transfer function. Parts family and machine tool groups were made up by means of multidimensional dizitizing analysis. A new software algorithm for forming parts family and machine groups has been proposed. Flexible manufacturing system was layout according to the FMS transfer function classification.

  • PDF

Multiobjective Genetic Algorithm for Scheduling Problems in Manufacturing Systems

  • Gen, Mitsuo;Lin, Lin
    • Industrial Engineering and Management Systems
    • /
    • v.11 no.4
    • /
    • pp.310-330
    • /
    • 2012
  • Scheduling is an important tool for a manufacturing system, where it can have a major impact on the productivity of a production process. In manufacturing systems, the purpose of scheduling is to minimize the production time and costs, by assigning a production facility when to make, with which staff, and on which equipment. Production scheduling aims to maximize the efficiency of the operation and reduce the costs. In order to find an optimal solution to manufacturing scheduling problems, it attempts to solve complex combinatorial optimization problems. Unfortunately, most of them fall into the class of NP-hard combinatorial problems. Genetic algorithm (GA) is one of the generic population-based metaheuristic optimization algorithms and the best one for finding a satisfactory solution in an acceptable time for the NP-hard scheduling problems. GA is the most popular type of evolutionary algorithm. In this survey paper, we address firstly multiobjective hybrid GA combined with adaptive fuzzy logic controller which gives fitness assignment mechanism and performance measures for solving multiple objective optimization problems, and four crucial issues in the manufacturing scheduling including a mathematical model, GA-based solution method and case study in flexible job-shop scheduling problem (fJSP), automatic guided vehicle (AGV) dispatching models in flexible manufacturing system (FMS) combined with priority-based GA, recent advanced planning and scheduling (APS) models and integrated systems for manufacturing.

Development of Cyber-Physical Production System based Manufacturing Control System for Aircraft Parts Plant (가상물리제조 기반 항공기 부품공장 생산통제시스템 개발)

  • Kim, Deok Hyun;Lee, In Su;Cha, Chun Nam
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.1
    • /
    • pp.143-150
    • /
    • 2020
  • To enhance the effectiveness of the FMS (flexible manufacturing system), it is necessary for the manufacturing control system to be upgraded by integrating the cyber and the physical manufacturing systems. Using the CPPS (Cyber-Physical Production System) concept, this study proposes a 4-stage vertical integration and control framework for an aircraft parts manufacturing plant. In the proposed framework, the process controller prepares the operations schedule for processing work orders generated from the APS (advanced planning & scheduling) system. The scheduled operations and the related control commands are assigned to equipments by the dispatcher of the line controller. The line monitor is responsible for monitoring the overall status of the FMS including work orders and equipments. Finally the process monitor uses the simulation model to check the performance of the production plan using real time plant status data. The W-FMCS (Wing rib-Flexible Manufacturing Control & Simulation) are developed to implement the proposed 4-stage CPPS based FMS control architecture. The effectiveness of the proposed control architecture is examined by the real plant's operational data such as utilization and throughput. The performance improvement examined shows the usefulness of the framework in managing the smart factory's operation by providing a practical approach to integrate cyber and physical production systems.