• 제목/요약/키워드: Floating slab

검색결과 70건 처리시간 0.029초

Influence of Slab Length on behavior of Floating Slab Track by Rail-slab-isolator Longitudinal Interaction

  • Nguyen, Huan Ha;Jang, Seung Yup;Chung, Wonseok
    • International Journal of Railway
    • /
    • 제5권4호
    • /
    • pp.163-166
    • /
    • 2012
  • Many different types of floating slab track have been developed and installed around the world to reduce vibrations and noise originating in the surrounding environment. The main objective of this study is to examine the influence of slab length on behavior of floating slab track based on rail-slab-isolator interaction. The floating slab track is modeled by the connection between rail, slab, isolator, and slab mat in the transition zone. All elements were assembled in a simplified two-dimensional (2D) finite element model (FEM). The maximum length of FST is then investigated based on the maximum additional rail stress criterion as described in UIC 774-3R since no fully accepted design criteria for the slab length in FST systems currently exist.

플로팅 슬래브궤도 슬래브 연결부에서의 차량 및 궤도의 동적 거동 (Dynamic Behavior of Train and Track at Slab Joints of Floating Slab Track)

  • 장승엽;양신추;황성호;안미경;최원일
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.993-997
    • /
    • 2011
  • Highlighted is significance of the floating slab track for mitigating vibrations induced by train, together with the recent trends towards speed-up of railways. In the design of the floating slab track, it is more beneficial to increase the slab length since a significant impact can be induced on the train and track at the discontinuous points between slabs with the finite slab length. However, if the slab length is too long, the tensile stress of slab concrete and the additional stress on rail due to the temperature change and shrinkage of concrete slab. Thus it is of great importance to relevantly determine the slab length. In this study, to understand these phenomena and establish the countermeasures, the dynamic behaviors of train and track at the inter-slab discontinuous points have been explored and the effect of dowel joints as one of countermeasures has been analytically investigated.

  • PDF

플로팅 슬래브 궤도의 최대길이 (Maximum Slab Length of Floating Slab Track)

  • ;장승엽;정원석
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 춘계학술대회 논문집
    • /
    • pp.173-180
    • /
    • 2011
  • Recently, many railway stations are built under the railway line in urban area. The passage of railway vehicles generates mechanical vibrations of a wide range of frequency. Thus, it is required to place structural vibration isolation systems to reduce vibration and noise originating from surrounding environments. This study is to investigate the maximum floating slab length based on track/floating slab interaction analyses. Actions to be taken into account include temperature, braking/acceleration, bending of the deck, and creep/shrinkage. The additional rail stress has been chosen for the criterion for the maximum slab length. In addition, further analyses are performed to include the stopper which restrict the in-plane movement of the floating slab track. Several alternatives for stopper positions were thoroughly studied in this study.

  • PDF

고무 마운트로 이산 지지되는 플로팅 슬래브 궤도의 실모형 실내 실험에서의 정적 및 저주파 대역 동적 거동 (Static and Dynamic Behavior at Low-Frequency Range of Floating Slab Track Discretely Supported by Rubber Mounts in Real-Scale Laboratory Test)

  • 황성호;장승엽;김은;박진철
    • 한국철도학회논문집
    • /
    • 제15권5호
    • /
    • pp.485-497
    • /
    • 2012
  • 최근 철도의 소음, 진동에 대한 사회적 관심이 증가하면서, 철도 진동을 효과적으로 줄일 수 있는 플로팅 슬래브 궤도의 적용이 활발히 이루어 지고 있다. 본 연구에서는 플로팅 슬래브 궤도의 동적 거동을 보다 정확히 이해하기 위하여 실모형 실내 실험을 통해 정적 거동과 시스템 고유 진동수 부근의 저주파 대역에서 플로팅 슬래브 궤도의 동적 거동을 분석함으로써 플로팅 슬래브 궤도의 설계의 적정성과 설계에 적용되는 해석모델의 유효성을 입증하고자 하였다. 실험 및 유한요소 해석 결과에 따르면 플로팅 슬래브 궤도는 강체 모드 고유진동수보다 휨모드 고유 진동수에 가까운 대역에서 탁월 주파수가 나타나며 변형 형상도 휨모드가 가장 지배적인 모드가 되므로, 플로팅 슬래브 궤도의 설계 시에는 슬래브의 휨강성과 조인트 및 단부의 경계조건 등을 고려해야 한다. 또한 Kelvin-Voigt 모델을 사용한 2차원 유한요소 해석모델에 의한 해석 결과는 정적 및 동적 처짐, 하중 전달율 등 실험결과와 매우 잘 일치하는 것으로 나타나 플로팅 슬래브 궤도의 설계에 활용하기에 충분한 신뢰성을 가지고 있는 것으로 나타났다.

등가 전단 스프링 모델을 이용한 플로팅 슬래브궤도 연결부에서의 하중전달 특성 분석 (Investigation of Load Transfer Characteristics at Slab Joints In The Floating Slab Track by Equivalent Shear Spring Model)

  • 장승엽;안미경;최원일;박만호
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2838-2843
    • /
    • 2011
  • Recently, the floating slab track that can effectively mitigate the vibration and structure-borne noise is being discussed to be adopted. The floating slab track which is a track system isolated from the sub-structure by vibration isolators. Unsimilarly to conventional track and the slab deflection is large. Therefore, the running safety and ride comfort should be investigated. Especially at slab joint since the load cannot be transferred, the possibility that the dynamic behavior of track and train became unstable is high. Thus, in general dowel bar are often installed at slab joints. To determine the appropriate dowel ratio the load transfer characteristics should be investigated. In this study, dowel bar joint is modeled by equivalent shear spring and this model is verified by comparison with experimental results. Using the proven model, the load transfer efficiency and deflection at slab joint according to dowel ratio, and stiffness and spacing of vibration isolator were examined.

  • PDF

플로팅 슬래브궤도와 일반 콘크리트궤도 접속부에서의 열차 및 궤도의 거동 분석 (Analysis of Behavior of Train and Track at Transition Zone between Floating Slab Track and Conventional Concrete Slab Track)

  • 장승엽;양신추;박만호;조수익
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2009년도 춘계학술대회 논문집 특별세미나,특별/일반세션
    • /
    • pp.379-384
    • /
    • 2009
  • It is of great importance to assure the running safety and ride comfort in designing the floating slab track for the mitigation of train-induced vibration. In this paper, for this, analyzed are the system requirements for the running safety and ride comfort, and then, the behavior of train and track at the transition zone between the floating slab track and the conventional concrete slab track according to several main design variables such as spring constant, damping coefficient, spacing and arrangement of isolators and slab length, using the dynamic analysis technique considering the train-track interaction. The results of numerical analysis demonstrate that the discontinuity of the support stiffness at the transition results in a drastic increase of the vertical vibration acceleration of the train body, wheel-rail interaction force, rail bending stress and uplift force. The increase becomes higher with the decrease of the spring constant of isolators and the increase of the isolator spacing, but the damping ratio does not significantly affect the behavior of train and track at the transition. Therefore, to assure the running safety and ride comfort, simultaneously increasing the effectiveness of vibration isolation, it is effective to minimize the relative vertical offset between the floating slab and the conventional track slab by adjusting the spring constant and spacing of isolators at the transition.

  • PDF

플로팅 슬래브궤도를 적용한 선하역사 구조물 진동해석 (Vibration Analysis of Station under Railway Lines with Floating Slab Track)

  • 장승엽;조호현;양신추
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1719-1724
    • /
    • 2010
  • In the areas susceptible to vibration and noise induced by railway traffic such as downtown area and stations under railway lines, the vibration and the structure-borne noise can be solved by floating slab track system separating the entire track structure from its sub-structure using anti-vibration mat or springs. In other countries, the core technologies for vibration-proof design and vibration isolator - one of key components - have been developed and many installation experiences have been accumulated. However, in Korea, since the design technology of system and components are not yet developed, the foreign systems are being introduced without any adjustment. Thus, in this study, the vibration isolator has been developed and its performance are investigated by the dynamic analysis of a station structure under railways lines and the floating slab track system. For this purpose, the loads transferred from the vibration isolator of the floating slab track were evaluated by train running simulation considering vehicle-track interaction, and then the dynamic analysis of station structure subjected to these loads was performed. The dynamic analysis results show that the proposed floating slab track can reduce the vibration of structure by about 25dB compared with that in conventional ballast track without floating system.

  • PDF

플로팅 슬래브궤도 연결부의 강도 분석 (Strength Analysis of Joints in Floating Slab Track)

  • 권구성;정원석;장승엽
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.375-381
    • /
    • 2011
  • The passage of railway vehicles generates mechanical vibrations and noises. This problem can be mitigated by the 'floating slab track' that isolating from infrastructures by installing vibration isolator in the concrete slab track. In the previous researches, adjacent floating slab tracks are connected by dowel bar system. It has been reported that many dowel bars with less diameter show better load transfer efficiency (LTE) compared to small number of dowel bars with larger diameter under the condition of the same dowel area. In this study, dowel system is further considered as a concrete anchorage system and the design strength of the dowel system was evaluated based on ACI code 318-08 Appendix D. The design strength of dowel system is then verified against failure load test of floating slab system.

  • PDF

방진궤도가 부설된 역사의 진동해석 기법 (Vibration Analysis Method for Railway Structure with Floating Slab)

  • 양신추;김태욱;강윤석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.561-566
    • /
    • 2003
  • In this paper, a numerical method for evaluating the efficiency of vibration reduction of substructure under floating slab track is developed for optimal design of floating slab track. The equation of motion for train and track interaction system is derived by applying compatibility condition at the contact points between wheels and rails. The train is modelled by 3-masses system and the track by continuous support beam system. Numerical analyses are carried out to investigate the effects of train speed, stiffness and damping of slab-pad, and track irregularity upon vibration reduction in substructure under the track.

  • PDF

부유궤도의 진동$\cdot$소음 특성 평가 (Evaluation of Vibration and Noise character on the Floating Slab Track)

  • 허영;이상진;김기훈;이인세
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2003년도 춘계학술대회 논문집
    • /
    • pp.343-348
    • /
    • 2003
  • As one of countermeasures for vibration and noise source which come from train operation in subway system, the heavy-weighted tunnel structure and the low-vibration track design have been adopted. In recent the low-vibration concrete track have been constructed to enhance the maintenance effectiveness as well as the reduction of vibration. This paper is explaining and evaluating of the characteristics of vibration and its effects comparing to tile ballast track, concrete track, and full surface supported floating slab track installed on Express bus terminal in Seoul subway No. 7 line.

  • PDF