• 제목/요약/키워드: Flood control unit area

검색결과 15건 처리시간 0.028초

홍수위험지도를 활용한 치수안전도 방법 개선 및 평가 - 영·섬진강 유역중심으로 - (Improvement and evaluation of flood control safety utilizing a flood risk map - Yeong-Seomjin River Basin -)

  • 어규;이성현;임인규;이규원;김지성
    • 한국수자원학회논문집
    • /
    • 제57권1호
    • /
    • pp.21-33
    • /
    • 2024
  • 최근 기후변화로 영향으로 재해의 양상이 다양화 및 대형화되고 있다. 이에 우리나라는 안전한 치수계획을 세우기 위해 수자원장기종합계획에서 홍수위험도 평가를 위해 홍수피해잠재능(Potential Flood Damage, PFD)의 개념이 도입되었다. 하지만, PFD의 문제점이 제기되면서 다양한 연구들이 진행되어왔다. 선행연구 대부분 PFD 인자를 수정·보완하거나 인자를 새로 추가하는 연구들이 진행되었다. 본 연구는 위험성 인자를 내포하고 있는 홍수위험지도를 사용하여 기존의 치수안전도 평가방법을 개선하고, 대상지역인 영·섬진강권역을 중심으로 평가하고자 한다. 본 연구에서 제시한 평가방법은 위험성 요소 및 잠재성 요소 분석, PFD 및 홍수방어수준 분석, 치수안전도 평가로 크게 3가지로 제시하였다. 본 연구에서 제시한 개선된 평가방법은 각종 치수안전도 평가 및 치수계획 수립시 활용될 것으로 기대된다.

동복호 저수구역내 주요 침수 분포종별 생육 및 영양염류 함량 (Growth Characteristics and Nutrient Contents under Dominant Submerged Plants in Flood Control Reservoir around Dongbok Lake)

  • 서영진;이준배;서동철;강세원;이상규;최익원;임병진;김상돈;허종수;조주식
    • 한국토양비료학회지
    • /
    • 제45권5호
    • /
    • pp.836-841
    • /
    • 2012
  • 동복호 저수구역내 침수된 식물체별 생육특성과 영양염류 함량 및 흡수량을 조사하기 위해 침수지역의 수위별 식물체의 분포와 생육특성을 각각 조사하였고, 자생하는 식물체들의 biomass 및 영양염류 흡수량을 조사하였다. 저수구역의 전체 면적은 $209,160m^2$로 침수 전 식생의 총 면적은 $156,871m^2$이었고, 7월 11일에는 장마로 인하여 식생이 서식하는 저수구역내 중부 및 하부가 침수되었다. 침수지역내우점 식생은 이삭사초, 돌피, 여뀌 및 털빕새귀리로 이삭사초가 전체 식생면적의 53.3%를 차지하였다. 동복호 저수구역내 주요 우점종의 분포비율에 따른 단위면적 당 ($m^{-2}$) O.M 총 흡수량은 이삭사초 ($204.5g\;m^{-2}$) > 털빕새귀리 ($40.6g\;m^{-2}$) > 여뀌 ($21.7g\;m^{-2}$) $\fallingdotseq$ 돌피 ($21.3g\;m^{-2}$) 순으로 높았다. T-N 총 흡수량은 이삭사초가 $1.30g\;m^{-2}$로 전체총 흡수량 ($2.55g\;m^{-2}$)의 약 51%를 차지하였고, 돌피, 여뀌 및 털빕새귀리가 각각 10, 13 및 12%를 차지하였다. T-P 총 흡수량은 이삭사초가 전체 T-P 총 흡수량의 51.8%인 $0.350g\;m^{-2}$로 가장 높았다. 이상의 결과를 미루어 볼 때, 동복호 저수구역내 주요 침수 식물체는 침수 후 영양염류를 용출하여 동복호의 부영양화를 촉진시킬 수 있을 것으로 판단된다.

사회적 평가 지표를 반영한 도시 홍수취약성 평가 (A Study on Urban Flood Vulnerability Assessment Considering Social Impact)

  • 이규민;최진원;전경수
    • 토지주택연구
    • /
    • 제11권1호
    • /
    • pp.109-116
    • /
    • 2020
  • This study aims to establish an approach to assess urban flood vulnerability by identifying social characteristics such as the road transportation and the vulnerable groups. Assessment procedures comprise three steps as: (1) composing the assessment criteria to reflect the urban characteristics; (2) calculating the weight; and (3) evaluating the vulnerability. The criteria were adopted by Delphi survey technique. Four criteria as land cover, residents, vulnerable areas, and disaster response were adopted in the current study. To determine the weight set of criteria, subjective and objective methods were combined. The weight set was determined using the combined method which reflects the Delphi method and Entropy analysis. In the process of data-based construction, GIS tools wwere used to extract administrative unit materials such as land cover, road status, and slope. Data on population and other social criteria were collected through the National Statistical Office and the Seoul Metropolitan statistical data. TOPSIS (Technique for Order of Preference by Similarity to Ideal Solution) technique, which uses materials from cell units in order to rank the closest distance to the best case and the farthest distance from the worst case by calculating the distances to the area of assessment, was applied to assess. The study area was the Dorimcheon basin, a flood special treatment area of Seoul city. The results from the current study indicates that the established urban flood vulnerability assessment approach is able to predict the inherent vulnerable factors in urban regions and to propose the area of priority control.

유역 특성과 유출추적에 의한 단위도 해석에 관한 고찰 (A Study on the Interpretalion of the Synthetic Unit Hydrograph According to the Characteristics of catchment Area and Runoff Routing)

  • 서승덕
    • 한국농공학회지
    • /
    • 제8권1호
    • /
    • pp.1088-1096
    • /
    • 1966
  • The following is a method of synthetic unitgraph derivation based on the routing of a time area diagram through channel storage, studied by Clark-Jonstone and Laurenson. Unithy drograph (or unitgraph) is the hydrograph that would result from unit rainfall\ulcorner excess occuring uniformly with respect to both time and area over a catchment in unit time. By thus standarzing rainfall characteristics and ignoring loss, the unitgraph represents only the effects of catchment characteristics on the time distribution of runoff from a catchment The situation abten arises where it is desirable to derive a unitgraph for the design of dams, large bridge, and flood mitigation works such as levees, floodways and other flood control structures, and are also used in flood forecasting, and the necessary hydrologie records are not available. In such cases, if time and funds permit, it may be desirable to install the necessary raingauges, pruviometers, and stream gaging stations, and collect the necessary data over a period of years. On the otherhand, this procedure may be found either uneconomic or impossible on the grounds of time required, and it then becomes necessary to synthesise a unitgraph from a knowledge of the physical charcteristics of the catchment. In the preparing the approach to the solution of the problem we must select a number of catchment characteristic(shape, stream pattern, surface slope, and stream slope, etc.), a number of parameters that will define the magnitude and shape of the unit graph (e.g. peak discharge, time to peak, and base length, etc.), evaluate the catch-ment characteristics and unitgraph parameters selected, for a number of catchments having adequate rainfall and stream data and obtain Correlations between the two classes of data, and assume the relationships derived in just above question apply to other, ungaged, Catchments in the same region and, knowing the physical characteritics of these catchments, substitute for them in the relation\ulcorner ships to determine the corresponding unitgraph parameters. This method described in this note, based on the routing of a time area diagram through channel storage, appears to provide a logical line of research and they allow a readier correlation of unitgraph parameters with catchment characteristics. The main disadvantage of this method appears to be the error in routing all elements of rainfall excess through the same amount of storage. evertheless, it should be noted that the synthetic unitgraph method is more accurate than the rational method since it takes account of the shape and tophography of the catchment, channel storage, and temporal variation of rainfall excess, all of which are neglected in rational method.

  • PDF

한국주요빙계의 소유역에 대한 순간단위권 유도에 관한 연구 (I) (Studies on the Derivation of the Instantaneous Unit Hydrograph for Small Watersheds of Main River Systems in Korea)

  • 이순혁
    • 한국농공학회지
    • /
    • 제19권1호
    • /
    • pp.4296-4311
    • /
    • 1977
  • This study was conducted to derive an Instantaneous Unit Hydrograph for the accurate and reliable unitgraph which can be used to the estimation and control of flood for the development of agricultural water resources and rational design of hydraulic structures. Eight small watersheds were selected as studying basins from Han, Geum, Nakdong, Yeongsan and Inchon River systems which may be considered as a main river systems in Korea. The area of small watersheds are within the range of 85 to 470$\textrm{km}^2$. It is to derive an accurate Instantaneous Unit Hydrograph under the condition of having a short duration of heavy rain and uniform rainfall intensity with the basic and reliable data of rainfall records, pluviographs, records of river stages and of the main river systems mentioned above. Investigation was carried out for the relations between measurable unitgraph and watershed characteristics such as watershed area, A, river length L, and centroid distance of the watershed area, Lca. Especially, this study laid emphasis on the derivation and application of Instantaneous Unit Hydrograph (IUH) by applying Nash's conceptual model and by using an electronic computer. I U H by Nash's conceptual model and I U H by flood routing which can be applied to the ungaged small watersheds were derived and compared with each other to the observed unitgraph. 1 U H for each small watersheds can be solved by using an electronic computer. The results summarized for these studies are as follows; 1. Distribution of uniform rainfall intensity appears in the analysis for the temporal rainfall pattern of selected heavy rainfall event. 2. Mean value of recession constants, Kl, is 0.931 in all watersheds observed. 3. Time to peak discharge, Tp, occurs at the position of 0.02 Tb, base length of hlrdrograph with an indication of lower value than that in larger watersheds. 4. Peak discharge, Qp, in relation to the watershed area, A, and effective rainfall, R, is found to be {{{{ { Q}_{ p} = { 0.895} over { { A}^{0.145 } } }}}} AR having high significance of correlation coefficient, 0.927, between peak discharge, Qp, and effective rainfall, R. Design chart for the peak discharge (refer to Fig. 15) with watershed area and effective rainfall was established by the author. 5. The mean slopes of main streams within the range of 1.46 meters per kilometer to 13.6 meter per kilometer. These indicate higher slopes in the small watersheds than those in larger watersheds. Lengths of main streams are within the range of 9.4 kilometer to 41.75 kilometer, which can be regarded as a short distance. It is remarkable thing that the time of flood concentration was more rapid in the small watersheds than that in the other larger watersheds. 6. Length of main stream, L, in relation to the watershed area, A, is found to be L=2.044A0.48 having a high significance of correlation coefficient, 0.968. 7. Watershed lag, Lg, in hrs in relation to the watershed area, A, and length of main stream, L, was derived as Lg=3.228 A0.904 L-1.293 with a high significance. On the other hand, It was found that watershed lag, Lg, could also be expressed as {{{{Lg=0.247 { ( { LLca} over { SQRT { S} } )}^{ 0.604} }}}} in connection with the product of main stream length and the centroid length of the basin of the watershed area, LLca which could be expressed as a measure of the shape and the size of the watershed with the slopes except watershed area, A. But the latter showed a lower correlation than that of the former in the significance test. Therefore, it can be concluded that watershed lag, Lg, is more closely related with the such watersheds characteristics as watershed area and length of main stream in the small watersheds. Empirical formula for the peak discharge per unit area, qp, ㎥/sec/$\textrm{km}^2$, was derived as qp=10-0.389-0.0424Lg with a high significance, r=0.91. This indicates that the peak discharge per unit area of the unitgraph is in inverse proportion to the watershed lag time. 8. The base length of the unitgraph, Tb, in connection with the watershed lag, Lg, was extra.essed as {{{{ { T}_{ b} =1.14+0.564( { Lg} over {24 } )}}}} which has defined with a high significance. 9. For the derivation of IUH by applying linear conceptual model, the storage constant, K, with the length of main stream, L, and slopes, S, was adopted as {{{{K=0.1197( {L } over { SQRT {S } } )}}}} with a highly significant correlation coefficient, 0.90. Gamma function argument, N, derived with such watershed characteristics as watershed area, A, river length, L, centroid distance of the basin of the watershed area, Lca, and slopes, S, was found to be N=49.2 A1.481L-2.202 Lca-1.297 S-0.112 with a high significance having the F value, 4.83, through analysis of variance. 10. According to the linear conceptual model, Formular established in relation to the time distribution, Peak discharge and time to peak discharge for instantaneous Unit Hydrograph when unit effective rainfall of unitgraph and dimension of watershed area are applied as 10mm, and $\textrm{km}^2$ respectively are as follows; Time distribution of IUH {{{{u(0, t)= { 2.78A} over {K GAMMA (N) } { e}^{-t/k } { (t.K)}^{N-1 } }}}} (㎥/sec) Peak discharge of IUH {{{{ {u(0, t) }_{max } = { 2.78A} over {K GAMMA (N) } { e}^{-(N-1) } { (N-1)}^{N-1 } }}}} (㎥/sec) Time to peak discharge of IUH tp=(N-1)K (hrs) 11. Through mathematical analysis in the recession curve of Hydrograph, It was confirmed that empirical formula of Gamma function argument, N, had connection with recession constant, Kl, peak discharge, QP, and time to peak discharge, tp, as {{{{{ K'} over { { t}_{ p} } = { 1} over {N-1 } - { ln { t} over { { t}_{p } } } over {ln { Q} over { { Q}_{p } } } }}}} where {{{{K'= { 1} over { { lnK}_{1 } } }}}} 12. Linking the two, empirical formulars for storage constant, K, and Gamma function argument, N, into closer relations with each other, derivation of unit hydrograph for the ungaged small watersheds can be established by having formulars for the time distribution and peak discharge of IUH as follows. Time distribution of IUH u(0, t)=23.2 A L-1S1/2 F(N, K, t) (㎥/sec) where {{{{F(N, K, t)= { { e}^{-t/k } { (t/K)}^{N-1 } } over { GAMMA (N) } }}}} Peak discharge of IUH) u(0, t)max=23.2 A L-1S1/2 F(N) (㎥/sec) where {{{{F(N)= { { e}^{-(N-1) } { (N-1)}^{N-1 } } over { GAMMA (N) } }}}} 13. The base length of the Time-Area Diagram for the IUH was given by {{{{C=0.778 { ( { LLca} over { SQRT { S} } )}^{0.423 } }}}} with correlation coefficient, 0.85, which has an indication of the relations to the length of main stream, L, centroid distance of the basin of the watershed area, Lca, and slopes, S. 14. Relative errors in the peak discharge of the IUH by using linear conceptual model and IUH by routing showed to be 2.5 and 16.9 percent respectively to the peak of observed unitgraph. Therefore, it confirmed that the accuracy of IUH using linear conceptual model was approaching more closely to the observed unitgraph than that of the flood routing in the small watersheds.

  • PDF

동화지구 절계 수문량 재추정 (Reestimation of Hydrologic Design Data in Donghwa Area)

  • 권순국;이재형;정재성;전일권;김민환;이경도
    • 한국농공학회논문집
    • /
    • 제46권6호
    • /
    • pp.3-10
    • /
    • 2004
  • The fundamental study of hydrologic redesign of Donghwa area located in a sccond tributary of Seomjin river was performed. The amounts of hydrologic design were estimated using the available cumulated hydrology data provided by Korea Agricultural and Rural Infrastructure Corporation (KARICO). The management status of The water resources in Donghwa area was also widely surveyed. The probability rainfalls, probable maximum precipitation (PMP) and probability floods were estimated and subsequently their changes analyzed. The amount of 200 year frequency rainfall with l day duration was 351.1 mm, 2.5 % increased from the original design value, and The PMP was 780.2 mm. The concentration time was reestimated as 2.5 hours from existing 2.4 hours. Soil Conservation Service(SCS) method was used to estimate effective rainfall- The runoff curve number was changed from 90 to 78, therefore the maximum potential retention was 71.6 mm, 154 % increased from the original value. The Hood estimates using SCS unit hydrograph showed 8 % increase from original value 623 $m^3$/s to 674 $m^3$/s and The probable maximum Hood was 1,637 $m^3$/s. Although the Row rate at the dam site was increased, the Hood risk at the downstream river was decreased by the Hood control of the Donghwa dam.

기후변화가 도시배수시스템에 미치는 영향 (Impact of Climate Change on An Urban Drainage System)

  • 강나래;김수전;이건행;김덕길;곽재원;노희성;김형수
    • 한국습지학회지
    • /
    • 제13권3호
    • /
    • pp.623-631
    • /
    • 2011
  • 최근 기후변화에 따른 전지구적인 지구온난화는 대형 태풍의 발생, 집중호우의 증가 등 기존의 기후 특성을 변화시키고 있다. 이로 말미암아 자연재해의 강도가 강해지고 있고, 인명과 재산피해가 대규모화되고 있다. 따라서 본 연구에서는 기후변화로 인한 자연재해에 대비하기 위하여 미래 기후변화를 예측하고 도심지에 미치는 영향을 파악하고자 하였으며, 대상지역으로는 배수 관거의 용량 초과로 인해 상습적으로 침수가 발생하는 인천광역시 계양구 일대를 선정하였다. 먼저, 기후변화 시나리오 및 기후모형들을 검토하여 적정 기후시나리오와 기후모형을 선정하고, 수집한 강우자료를 시간단위로 축소한 뒤 미래 기후변화의 영향으로 인해 발생할 수 있는 확률강우량을 구하였다. 미래 증가하는 확률강우량을 XP-SWMM모형에 적용해 도시배수시스템의 홍수유출량을 산정 하였는데, 대상지역에 월류가 발생할 것으로 예상되었다. 따라서 이에 대한 적절한 대책 마련이 필요할 것으로 사료된다.

소하천수계의 단위유량도 유도 및 비교에 관한 수문학적 고찰 (Hydrological Studies on the Comparison and the Derivation of Unit Hydrography in the small River Systems.)

  • 이순혁
    • 한국농공학회지
    • /
    • 제20권3호
    • /
    • pp.4739-4749
    • /
    • 1978
  • This studies were conducted to derive synthetic unitgraphs and triangular unitgraphs correlated with watershed characteristics which can be used to the estimation and control of flood for the rational development of Agricultural water resources. Derived Synthetic unitgraphs and Triangular unitgraphs can be applied to the ungaged watersheds were compared with average unitgraphs by observed data. Seven small watersheds were selected as studying basins Han, Geum, Nakdong, Yeongsan and Inchon river system. The results summarized for these studies are as follows: 1. Average unitgraphs by observed data and dimensionless unitgraphs for synthesis were derived for all river systems. 2. Peak discharge per unit area of the unitgraph, qp, was derived as qp=10-0.389-0.0424Lg with a high significance. 3. Formulas for the base width of unitgraph of 50 and 75 percent for peak flow for each water systems was adopted as Table 5. 4. The base length of the unitgraph, Tb, in hours in connection with time to peak, Tp, in hours was expressed as Tb =4.3Tp. 5. Peak discharge, Qp, were obtained as Table 6 by the Triangular form to all subwatersheds. 6. Relative errors in the peak discharge of the synthetic unitgraphs showed to be 7.3 percent to the peak of observed average unitgraphs except errors of peak discharge for Yeongsan river system. This indicates that Synthetic unitgraphs for the small watersheds of Han, Geum, Nakdong and Inchon river systems can be applied to the ungaged watersheds. On the other hand, It was confirmed that the accuracy of Instantaneous Unit Hydrograph with only 1.6 percent as relative errors was approaching more closely to the observed average unitgraph than that of synthetic unitgraph with relative errors. 23.9 percent for Yeongsan river system. 7. Errors in the peak discharge of the triangular unitgraph to the observed average unitgraph showed to be 0.6 percent to 7.5 percent which can be regarded as a high precision within the range of 200 to 500$\textrm{km}^2$ in area. On the contrary, application of triangular unitgraph within the range of 200$\textrm{km}^2$ in area has defined as a unsuitable method because of high relative errors, 26.4 percent to 61.6 percent.

  • PDF

기왕자료를 이용한 수위상승거동곡선에 관한 연구 (A Study on Water-level Rise Behavior Curve using Historical Record)

  • 곽재원;김길호
    • 대한토목학회논문집
    • /
    • 제43권5호
    • /
    • pp.601-610
    • /
    • 2023
  • 하천의 수위변화 특성에 대한 이해는 여러 수방활동 및 하천환경의 관리를 위하여 필수적이다. 본 연구는 각종 수방활동에서 종사하는 현장 엔지니어가 특정 지점의 홍수시 수위상승 특성을 간편하게 확인하고 활용할 수 있는 방법론을 제시하는 데 목적이 있다. 이를 위하여 한강수계의 홍수취약지구에 홍수정보를 제공하고 있는 45개 관측소의 2010년부터 2022년까지의 10분 단위 수위자료를 이용하여 홍수 사상에서 발생하는 시간적인 상승량을 단위시간을 통하여 정량화하고 분위화한 수위상승거동곡선(WRBC) 개념을 제시하였으며, 그 적용성을 검토하였다. 분석결과, 홍수시의 수위상승 거동은 평균적으로 초반 6.2시간 이내에 전체 수위상승량의 80% 이상이 상승하며 그 이후에는 점진적으로 상승하는 것으로 분석되었으며, 수위상승 이후에 일정한 평형상태에 도달하는 시간은 상류유역의 면적과 유출 특성에 따라 다른 것으로 나타났다. 이러한 WRBC는 홍수유출로 인하여 발생하는 수위상승의 평균적인 경향에 대해 통계적이고 직관적인 검토에 장점이 있으며, 하천변에 위치한 친수공간, 수리시설 등의 수방활동에 활용할 수 있을 것으로 기대된다.

대단위 농업종합개발사업의 사회경제적 기대편익 추정과 결합비용의 배분 -금강지구를 중심으로- (Estimation of the Expected Socio-economic Benefits of the Largescale Comprehensive Agricultural Development Project and Jointcost Allocation -In the Case of Kumgang Project Area-)

  • 임재환
    • 농업과학연구
    • /
    • 제23권1호
    • /
    • pp.159-176
    • /
    • 1996
  • This study is aimed at reviewing the methods of joint cost allocation and allocating the joint cost of estuary dam with specially repect to Kumgang Large-scale Agricultural Comprehensive Development Project. Apart from the water resource development project propelled by Water Resource Development Corporation in connection with Law of Multipurpose Dam Development, the Largescale Comprehensive Agricultural Development Projects couldn't ins-titutionally be carried out cost allocation of common facilities, even though it were concerned with irrigation, municipal and industrical water supply, flood control, sightseeing and industrial zone development components. To decrease farmer's burden of the project costs and, operation and maintenance costs, the joint costs of common facilities like estuary dam included in agricultural development projects have to be allocated by suitable method as alternative cost-remaining benefit method and the analytical activity should be supported by revising the concerned laws as Rural Development and Promotion and, Rural Rearrangement conpatible with the law for multipurpose dam development. Kumgang Agricultural Comprehensive Development Project was selected as a case study for the estimation of socio-economic benefits by project components and joint cost allocation of the estuary dam. The main results of the study are as follows; Joint cost allocation and unit charges by components 1. The project area will be 25,554ha with total project cost of 624,860 million won including the estuary dam cost of 120,843 million won. The project costs were ex-pressed by 1994 constant price. 2. Total quantity of water was estimated 365 million tons which were consisted of 245 million tons for irrigation, 73 million tons for municipal water and 47 million tons for industrial water. 3. The rates of joint cost allocation were amounted to 34.2% for agriculture, 2.5% for sightseeing, 45.7% for transportation, 11.8% for M & I water supply and 5.8% for flood control respectively. 4. The unit financial charges by project components were estimated at 7.88 won per ton for irrigation, 16.11won for M & I water, 1,686won per vehicle one pass, 977won per Pyeong according to the capital recovery method. The financial charges using straitline method for depreciation were estimated at 7.88won per ton for irrigation, 9.12won per ton for M & I water, 624won per vehicle one pass for transportation and 331won per Pyeong for sightseeing area. 5. The unit economic charges by project components were estimated at 21.1 won per ton for irrigation, 15.2won for M & I water, 977won per vehicle one pass, 977won per Pyeong according to the capital recovery method. The economic charges using straitline method for depreciation were estimated at 11.72won per ton for irrigation, 8.61won per ton for M & I water, 331won per vehicle one pass for transportation. Policy recommendation 1. The unit operation and maintenance costs for irrigation water in the paddy field couldn't be imposed as the water resource cost untreated. 2. The dam costs including investment cost and O & M cost, as a joint cost, had to be allocated by each benefited components as transportation, M & I water supply, flood control, irrigation and drainage, and sightseeing. But the agricultural comprehensive project have been dealt as an irrigation project without any appraisal socio-economic benefits and any allocating the joint cost of estuary dam. 3. All the associated project benefits and costs must be evaluated based on accounting principle and rent recovery rate of the project costs and O & M costs should be regulated by the laws concerned. 4. The rural development and promotion law and rural rearrangement law have to be revised comprising joint cost allocation considering free rider problems. 5. The government subsidy for the agricultural base development project has to be covered all the project costs. In case of common facilities representing joint cost allocation problems, all the allocated casts for other purposes like transportation and M & I water supply etc. should be recovered for formation in investment fund for agricultural base development and to procure O & M costs for irrigation facilities.

  • PDF