• Title/Summary/Keyword: Fluid Coupling

Search Result 374, Processing Time 0.029 seconds

An Experimental Study on Power Transmission Characteristics Flow Rate in Fluid Couplings (유체커플링에서 유량과 동력전달특성에 관한 실험적 연구)

  • Pak, Yong-Ho;Moon, Dong-Cheol;Yum, Man-Oh
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.11
    • /
    • pp.27-35
    • /
    • 1995
  • The fluid coupling combined with a pump and a turbine have many merits compared with other couplings, their uses are increesing rapidly in various industrial fields at home and abroad in pursuit of high-speed more efficiency durability of various mechanic devices. The authorities concerned have recognized the improtance of the fluid coupling and supported its developement and now some trial products began to show up. As the structrue and characteristics of the fluid coupling have little similarity to other kinds of couplings and its fluid behavior is unique, so its characteristic analysis is expected to be difficult. Until now no satisfactory study on the characteristics of the fluid coupling seems to have been conducted at home, so a study on this field needs to be done urgently. The purpose of this research is to construct the experimental test set-ups and establish a series of performance test program for the domestically developed fluid couplings and to provide a software to store and utilize these experimental data which can be used to improve the performance of the fluid coupling and solve on the job problems confronted in operation. The performance test consists of taking measurment of torque, rpm and efficiency of the fluid coupling for three different amount of working fluid inside with various loads to the output shaft and finally infestigating the torque, rpm and efficiency characteristics of the fluid coupling with respect to these parameters. The results of this study can contribute valuable references to the development of variable speed fluid coupling and torque converter currently pursued by the domestic industry.

  • PDF

FEM-BEM iterative coupling procedures to analyze interacting wave propagation models: fluid-fluid, solid-solid and fluid-solid analyses

  • Soares, Delfim Jr.
    • Coupled systems mechanics
    • /
    • v.1 no.1
    • /
    • pp.19-37
    • /
    • 2012
  • In this work, the iterative coupling of finite element and boundary element methods for the investigation of coupled fluid-fluid, solid-solid and fluid-solid wave propagation models is reviewed. In order to perform the coupling of the two numerical methods, a successive renewal of the variables on the common interface between the two sub-domains is performed through an iterative procedure until convergence is achieved. In the case of local nonlinearities within the finite element sub-domain, it is straightforward to perform the iterative coupling together with the iterations needed to solve the nonlinear system. In particular, a more efficient and stable performance of the coupling procedure is achieved by a special formulation that allows to use different time steps in each sub-domain. Optimized relaxation parameters are also considered in the analyses, in order to speed up and/or to ensure the convergence of the iterative process.

Fluid Effects on the Core Seismic Behavior of a Liquid Metal Reactor

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2125-2136
    • /
    • 2004
  • In this paper, a numerical application algorithm for applying the CFAM (Consistent Fluid Added Mass) matrix for a core seismic analysis is developed and applied to the 7-ducts core system to investigate the fluid effects on the dynamic characteristics and the seismic time history responses. To this end, three cases such as the in-air condition, the in-water condition without the fluid coupling terms, and the in-water condition with the fluid coupling terms are considered in this paper. From modal analysis, the core duct assemblies revealed strongly coupled out-of-phase vibration modes unlike the other cases with the fluid coupling terms considered. From the results of the seismic time history analysis, it was also verified that the fluid coupling terms in the CFAM matrix can significantly affect the impact responses and the seismic displacement responses of the ducts.

The Development of Hydraulic-Coupling Experimental Apparatus Using Brake Load and Prediction of Torque Performance (브레이크 부하를 이용한 유체커플링 실험장치 개발과 토크 성능 예측)

  • 박용호;김기홍
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.100-107
    • /
    • 2000
  • The hydraulic couplings have been widely used in industries, automobile, and power-station drives including ships. A mathematical analysis by which the design and application of hydraulic couplings are made is used in conventional design formulae and general roto-dynamic theories. The fluid flow of hydraulic couplings can be considered to have two component, one circumferentially about the coupling axis, and the other passing fluid from the pump to the turbine in the plane of the coupling axis. Tests have been carried out on the full-scale production coupling. The performance test consists of taking measurement of torque of the fluid coupling for three different amount of working fluid inside with various loads to the output shaft. The purpose of this research is to construct the experimental test equipments and to establish a series of performance test for the domestically developed hydraulic couplings, and to obtain experimental results which can be used to improve the performance of the hydraulic coupling and to solve the practical problems confronted in operation.

  • PDF

Fluid-structure interaction problems solution by operator split methods and efficient software development by code-coupling

  • Ibrahimbegovic, Adnan;Kassiotis, Christophe;Niekamp, Rainer
    • Coupled systems mechanics
    • /
    • v.5 no.2
    • /
    • pp.145-156
    • /
    • 2016
  • An efficient and general numerical strategy for fluid-structure interaction problems is presented where either the fluid or the structure part are represented by nonlinear models. This partitioned strategy is implemented under the form of code coupling that allows to (re)-use previous made developments in a more general multi-physics context. This strategy and its numerical implementation is verified on classical fluid-structure interaction benchmarks, and then applied to the impact of tsunamis waves on submerged structures.

유체커플링의 특성에 관한 실험적 연구

  • 박용호;박진건;김기홍;염만오
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.204-208
    • /
    • 1992
  • The purpose of this research is to construct the experimental test set-ups and establish a series of performance test program for the domestically developed fluid couplings, and to provide a software to store and utilize these experimental data which can be used to improve the performance of the fluid coupling and solve on the job problems confronted in operation. The performance test consists of taking measurement of torque rpm and efficiency of the fluid coupling for three different amount of working fluid inside with various loads to the output shaft and finally investigating the torque rpm and efficiency characteristics of the fluid coupling with respect to these parameters. The results of this study can contribute valuable references tot the development of variable speed fluid coupling and torque converter currently pursued by the domestic industry.

A Study on the Characteristics of Coupling Loss factor Associated with Fluid Loading (접수 구조물의 연성손실계수 변화에 관한 연구)

  • 류정수
    • The Journal of the Acoustical Society of Korea
    • /
    • v.19 no.6
    • /
    • pp.17-22
    • /
    • 2000
  • Statistical Energy Analysis(SEA) is an efficient tool to predict the broadband noise and vibration for the huge and complex structures such as aircraft and ships. To estimate the noise and vibration by using SEA accurately, the characteristics of SEA parameters associated with fluid loading have to be investigated. In this report, the fluid loaded coupling loss factors were calculated for an 'L' and 'T' type line connections and compared to the ones without fluid loading. Then, the vibration levels for steel box model with 'L' and 'T' type line connection were computed using the fluid loaded and no fluid loaded coupling loss factors, respectively. As a result, the calculated vibration levels of the model using the fluid loaded coupling loss factors were lower than those without fluid loading. As a conclusion, it is necessary to use the fluid loaded coupling loss factors for increasing the prediction accuracy on the noise and vibration of immersed structures.

  • PDF

Rotordynamic Analysis and Experimental Investigation of the Turbine-Generator System Connected with Magnetic Coupling (마그네틱 커플링으로 연결된 터빈-발전기 시스템의 로터다이나믹 해석 및 실험적 고찰)

  • Kim, Byung Ok;Park, Moo Ryong;Choi, Bum Seok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.3
    • /
    • pp.32-38
    • /
    • 2013
  • This paper deals with the study on the rotordynamic and experimental analysis of turbine-generator system connected with a magnetic coupling. Although magnetic coupling has been used to torque transmission of chemical processing pump rotating at under 3,600rpm, magnetic coupling in this study is applied to high-speed turbine-generator system using a working fluid that is refrigerant such as ammonia or R-124a. Results of rotordynamic design analysis are as follows. The first, shaft diameter nearest to outer hub of magnetic coupling has a big effect on the $1^{st}$ critical speed of generator rotor. The second, if the $1^{st}$ critical speeds of turbine rotor and generator rotor have enough to separation margin in comparison to rated speed, the $1^{st}$ critical speed of turbine-magnetic coupling-generator rotor train has enough to separation margin regardless of connection stiffness of magnetic coupling. The analytical FE model is guaranteed by impact test on the prototype and condition monitoring such as measurements of vibration and bearing temperature is also performed.

Study on bidirectional fluid-solid coupling characteristics of reactor coolant pump under steady-state condition

  • Wang, Xiuli;Lu, Yonggang;Zhu, Rongsheng;Fu, Qiang;Yu, Haoqian;Chen, Yiming
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1842-1852
    • /
    • 2019
  • The AP1000 reactor coolant pump is a vertical shielded-mixed flow pump, is the most important coolant power supply and energy exchange equipment in nuclear reactor primary circuit system, whose steadystate and transient performance affect the safety of the whole nuclear island. Moreover, safety demonstration of reactor coolant pump is the most important step to judge whether it can be practiced, among which software simulation is the first step of theoretical verification. This paper mainly introduces the fluid-solid coupling simulation method applied to reactor coolant pump, studying the feasibility of simulation results based on workbench fluid-solid coupling technology. The study found that: for the unsteady calculations of the pure liquid media, the average head of the reactor coolant pump with bidirectional fluid-solid coupling decreases to a certain extent. And the coupling result is closer to the real experimental value. The large stress and deformation of rotor under different flow conditions are mainly distributed on impeller and idler, and the stress concentration mainly occurs at the junction of front cover plate and blade outlet. Among the factors that affect the dynamic stress change of rotor, the pressure load takes a dominant position.

A Study on Vibration Characteristic of Stiffened Plates with Fluid Coupling Effect inside a Tank (탱크 내부 유체 연성 효과에 의한 보강판의 진동 특성 연구)

  • Jeong, Woo-In;Kwon, Jong-Hyun;Kim, Mun-Su
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2015.09a
    • /
    • pp.56-62
    • /
    • 2015
  • In ship structure, many parts are in contact with inner or outer fluid as stern, ballast and oil tanks. Fatigue damages are sometimes observed in these tanks which seem to be caused by resonance with exciting force of engine and propeller. Vibration characteristics of these tanks in contact with fluid are significantly affected by fluid coupling effect. Therefore it is important to exactly predict vibration characteristics of tank structure. In order to estimate the vibration characteristics, the fluid-structure interaction(FSI) problem should be solved precisely. But it is difficult to estimate exactly the magnitude of the fluid coupling effect because it has some problems such as a fluid-structure interaction, influence by the free surface, vibration modes of structural panels and depth of water. In this paper, with fluid coupling effect, the effect of structural constraint between panels on the vibration characteristics are investigated numerically and discussed.

  • PDF