• Title/Summary/Keyword: Fluid Power Circuits

Search Result 14, Processing Time 0.022 seconds

Development of Analysis Model for Characteristics Study of Fluid Power Systems in Injection Molding Machine (사출성형기 유압시스템의 특성 검토를 위한 해석 모델 개발)

  • Jang, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2011
  • Injection molding machine is the assembly of many kinds of mechanical and fluid power part and electro-electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of injection molding machine are modelled and analyzed using a commercial program AMESim. The analysis model which is detailed about the parts applied a publishing catalog data. Sub system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like displacement, pressure, flow rates at each node and so on. Total fluid power circuit model is also made and analyzed. The results made by analysis will be used design of fluid power circuit of injection molding machine.

Characteristics Analysis of the Fluid Power System for a Double-color Injection Molding Machine Development (이색 사출성형기 개발을 위한 유압시스템의 특성 검토)

  • Jang, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.4
    • /
    • pp.24-31
    • /
    • 2011
  • Double-color Injection molding machine is the assembly of many kinds of mechanical, fluid power part and electric electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of double-color injection molding machine are modelled and analyzed using a commercial program AMESim. Partial system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like pressure, flow rates, displacement at each node and so on. Analysis modeling and compared the data which gets from experiment and the analysis result which has a reliability got data. The results made by analysis will be used design of fluid power circuit for developing a double-color injection molding machine.

객체지향 기법을 이용한 다관절 크레인의 유압 시스템 시뮬레이션

  • 김문기;심영보;장명수;이교일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.751-755
    • /
    • 1995
  • It become more difficult to anticipate the performance of fluid power systems as the number of components increases because of nonlinearrities inherent in hydraulic components. In this situation, the computer simulation technique can be an effective tool in the analysis and design of fluid power systems. In this paper, simulation results are presented for dynamic characteriatics of a knuckle crane. Simple models for hydraulic components and relatively detailed motion equations for attachments are used. the simulation reaults are very close to those of experiments. The simulation is performed using a simulation package developed with object-oriented method. This package provides the encironment that user can construct desirct desired circuits form the component library, checks the continuity and compatibility conditions automatically and executes simulation

  • PDF

Oil Leak Analysis using Simulation Model of Hydraulic System for Dental Chair (치과용 유니트체어 유압구동 시스템 해석모델을 활용한 누유량 분석)

  • Dae Kyung Noh;Dong Won Lee;Jae Yong Kim;Joo Sup Jang
    • Journal of Drive and Control
    • /
    • v.20 no.4
    • /
    • pp.35-44
    • /
    • 2023
  • This study aimed to analyze the performance of hydraulic systems for dental chair when long working hours makes the temperature of hydraulic fluid rise. The study was carried out in the following manner. First, 'cylinder's clearance' was reflected in the three kinds of hydraulic circuits, which were developed through the preceding study, in order to analyze oil leak. Second, 12 cases of simulations comprised of the up and down of cylinders were carried out. Third, it was determined whether the cylinder velocity of dental chair surpasses 1cm/s required in the development even in the hydraulic fluid temperature of 60℃. In conclusion, this study used SimulationX to verify the performance stability at high temperatures using three types of hydraulic circuits designed to develop a Korean unit chair.

Case of Improving Design by Using Analysis Model of Hydraulic System for Dental Chair (치과용 유니트체어 유압구동 시스템 해석모델을 활용한 개선설계 사례)

  • Dae Kyung Noh;Dong Won Lee;Taek June Kim;Joo Sup Jang
    • Journal of Drive and Control
    • /
    • v.20 no.2
    • /
    • pp.1-6
    • /
    • 2023
  • This study aims to develop a Korean dental chair hydraulic circuit by improving the existing equipment in order to localize foreign leading companies' products. The suggested Hydraulic circuit can be applicable to varied sectors where height and backrest angle control of chair-type equipment are required. The study followed the steps below. First, three kinds of foreign hydraulic circuits were analyzed and three kinds of Korean dental chair hydraulic circuits were suggested. Second, it was determined whether the three kinds of Korean hydraulic circuits operate normally through SimulationX, a software specialized in multi domain analysis, and the effectiveness of each circuit was examined.

Two-Phase Flow Field Simulation of Horizontal Steam Generators

  • Rabiee, Ataollah;Kamalinia, Amir Hossein;Hadad, Kamal
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.92-102
    • /
    • 2017
  • The analysis of steam generators as an interface between primary and secondary circuits in light water nuclear power plants is crucial in terms of safety and design issues. VVER-1000 nuclear power plants use horizontal steam generators which demand a detailed thermal hydraulics investigation in order to predict their behavior during normal and transient operational conditions. Two phase flow field simulation on adjacent tube bundles is important in obtaining logical numerical results. However, the complexity of the tube bundles, due to geometry and arrangement, makes it complicated. Employment of porous media is suggested to simplify numerical modeling. This study presents the use of porous media to simulate the tube bundles within a general-purpose computational fluid dynamics code. Solved governing equations are generalized phase continuity, momentum, and energy equations. Boundary conditions, as one of the main challenges in this numerical analysis, are optimized. The model has been verified and tuned by simple two-dimensional geometry. It is shown that the obtained vapor volume fraction near the cold and hot collectors predict the experimental results more accurately than in previous studies.

Effects of E-Learning as a Supplementary Learning for Basic Fluid Power Practice (유공압기초실습의 보완학습으로서 E러닝의 효과)

  • Huh, Jun-Young;Jeong, Seong-Won
    • The Journal of Korean Institute for Practical Engineering Education
    • /
    • v.2 no.2
    • /
    • pp.10-15
    • /
    • 2010
  • The subject of basic fluid power practice which is used in various industries requiring factory automation aims at understanding of the composition and operating principles of pneumatic components and programming of electric sequential circuits, building the design ability of pneumatic system. This subject goes by 3 hour classes with theory and practice side by side. So it is not enough time to instruct students various contents related in this subject. In this research a supplementary learing using E-learning is proposed as a solution for this problem. The off-line classes of this subject went with E-learning side by side and analyzed the effects of E-learning as a supplementary learning through the students survey who attended the class. And further needed research is presented.

  • PDF

An Analysis of the Acoustical Source Characteristics in the Time-varying Fluid Machines (유체기계 덕트 내 시변 음원의 음향 특성에 관한 연구)

  • 장승호;이준신;이정권
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.2
    • /
    • pp.104-112
    • /
    • 2003
  • The in-duct acoustical sources of fluid machines are often characterized by the source impedance and strength using the linear time-invariant model. However, negative resistances, which are physically unreasonable, have been found throughout various measurements of the source properties in IC-engines and compressors. In this paper, the effects of the time-varying nature of fluid machines on the source characteristics are studied analytically. For this purpose, the simple fluid machine consisting of a reciprocating piston and an exhaust is considered as representing a typical periodic, time-varying system and the equivalent circuits are analyzed. Simulated measurements using the analytic solutions show that the time-varying nature in the actual sources is one of the main causes of the negative source resistances. It is also found that, for the small magnitude of the time-varying component, the source radiates large acoustic power if the piston operates at twice the natural frequency of the static system. or integral submultiples of that rate.

Clamping force control of injection molding machine using 2-way cartridge valve based logic circuit (2-방향 카트리지 밸브 기반 로직회로에 의한 사출성형기의 형체력 제어)

  • Cho, Seung Ho
    • Journal of Drive and Control
    • /
    • v.13 no.2
    • /
    • pp.51-58
    • /
    • 2016
  • The present study deals with the issue of clamping force control of an injection molding machine using 2-way cartridge valve based logic circuit. The operating principle for the cartridge valve is described with its construction and static opening behavior. Basic module circuits are designed first and analysed according to the basic functions. Then they are combined with a virtual design model for the clamping mechanism to simulate the control performance of the overall system. The backlash inherent in the mechanism is considered while evaluating the time-delay in the process of clamping force build-up. The effects of a couple of design parameters in backlash, i.e., interval and stiffness have been demonstrated in the time-domain.

CHAINED COMPUTATIONS USING AN UNSTEADY 3D APPROACH FOR THE DETERMINATION OF THERMAL FATIGUE IN A T-JUNCTION OF A PWR NUCLEAR PLANT

  • Pasutto, Thomas;PENiguel, Christophe;Sakiz, Marc
    • Nuclear Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.147-154
    • /
    • 2006
  • Thermal fatigue of the coolant circuits of PWR plants is a major issue for nuclear safety. The problem is especially accute in mixing zones, like T-junctions, where large differences in water temperature between the two inlets and high levels of turbulence can lead to large temperature fluctuations at the wall. Until recently, studies on the matter had been tackled at EDF using steady methods: the fluid flow was solved with a CFD code using an averaged turbulence model, which led to the knowledge of the mean temperature and temperature variance at each point of the wall. But, being based on averaged quantities, this method could not reproduce the unsteady and 3D effects of the problem, like phase lag in temperature oscillations between two points, which can generate important stresses. Benefiting from advances in computer power and turbulence modelling, a new methodology is now applied, that allows to take these effects into account. The CFD tool Code_Saturne, developped at EDF, is used to solve the fluid flow using an unsteady L.E.S. approach. It is coupled with the thermal code Syrthes, which propagates the temperature fluctuations into the wall thickness. The instantaneous temperature field inside the wall can then be extracted and used for structure mechanics computations (mainly with EDF thermomechanics tool Code_Aster). The purpose of this paper is to present the application of this methodology to the simulation of a straight T-junction mock-up, similar to the Residual Heat Remover (RHR) junction found in N4 type PWR nuclear plants, and designed to study thermal striping and cracks propagation. The results are generally in good agreement with the measurements; yet, in certain areas of the flow, progress is still needed in L.E.S. modelling and in the treatment of instantaneous heat transfer at the wall.