• Title/Summary/Keyword: Fluid model

Search Result 4,498, Processing Time 0.038 seconds

Remedy for ill-posedness and mass conservation error of 1D incompressible two-fluid model with artificial viscosities

  • Byoung Jae Kim;Seung Wook Lee;Kyung Doo Kim
    • Nuclear Engineering and Technology
    • /
    • v.54 no.11
    • /
    • pp.4322-4328
    • /
    • 2022
  • The two-fluid model is widely used to describe two-phase flows in complex systems such as nuclear reactors. Although the two-phase flow was successfully simulated, the standard two-fluid model suffers from an ill-posed nature. There are several remedies for the ill-posedness of the one-dimensional (1D) two-fluid model; among those, artificial viscosity is the focus of this study. Some previous works added artificial diffusion terms to both mass and momentum equations to render the two-fluid model well-posed and demonstrated that this method provided a numerically converging model. However, they did not consider mass conservation, which is crucial for analyzing a closed reactor system. In fact, the total mass is not conserved in the previous models. This study improves the artificial viscosity model such that the 1D incompressible two-fluid model is well-posed, and the total mass is conserved. The water faucet and Kelvin-Helmholtz instability flows were simulated to test the effect of the proposed artificial viscosity model. The results indicate that the proposed artificial viscosity model effectively remedies the ill-posedness of the two-fluid model while maintaining a negligible total mass error.

Analysis of the Macroscopic Traffic Flow Changes using the Two-Fluid Model by the Improvements of the Traffic Signal Control System (Two-Fluid Model을 이용한 교통신호제어시스템 개선에 따른 거시적 교통류 변화 분석)

  • Jeong, Yeong-Je;Kim, Yeong-Chan;Kim, Dae-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.27 no.1
    • /
    • pp.27-34
    • /
    • 2009
  • The operational effect of traffic signal control improvement was evaluated using the Two-Fluid Model. The parameters engaged in the Two-Fluid Model becomes food indicators to measure the quality of traffic flow due to the improvement of traffic signal operation. A series of experiment were conduced for the 31 signalized intersections in Uijeongbu City. To estimate the parameters in the Two-Fluid Model the trajectory informations of individual vehicles were collected using the CORSIM and Run Time Extension. The test results showed 35 percent decrease of average minimum trip time per unit distance. One of the parameters in the Two-Fluid Model is a measure of the resistance of the network to the degraded operation with the increased demand. The test result showed 28 percent decrease of this parameter. In spite of the simulation results of the arterial flow, it was concluded that the Two-Fluid Model is useful tool to evaluate the improvement of the traffic signal control system from the macroscopic aspect.

Interactive Simulation between Rigid body and Fluid using Simplified Fluid-Surface Model (간략화된 유체 표면모델을 이용한 강체와 유체의 상호작용 시뮬레이션)

  • Kim, Eun-Ju
    • Journal of Korea Multimedia Society
    • /
    • v.12 no.2
    • /
    • pp.323-328
    • /
    • 2009
  • Natural Phenomena are simulated to make computer users feel verisimilitude and be immersed in games or virtual reality. The important factor in simulating fluid such as water or sea using 3D rendering technology in games or virtual reality is real-time interaction and reality. There are many difficulties in simulating fluid models because it is controlled by many equations of each specific situation and many parameter values. In addition, it needs a lot of time in processing physically-based simulation. In this paper, I suggest simplified fluid-surface model in order to represent interaction between rigid body and fluid, and it can make faster simulation by improved processing. Also, I show movement of fluid surface which is come from collision of rigid body caused by reaction of fluid in representing interaction between rigid body and fluid surface. This natural fluid-surface model suggested in this paper is represented realistically in real-time using fluid dynamics veri similarly. And the fluid-surface model will be applicable in games or animation by realizing it for PC environment to interact with this.

  • PDF

Hysterisis Investigation of Magnetorheological Fluid Using Preisach Model (Preisach 모델을 이용한 MR 유체의 히스테리시스 특성 고찰)

  • Han, Y.M.;Lim, K.H.;Choi, S.B.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.350-355
    • /
    • 2005
  • This paper presents a new approach for hysteresis modeling of a magnetorheological (MR) fluid. The field-dependent hysteresis of MR fluid is investigated using the Preisach model. The commercial MR Product (MRF-132LD, Lord Corporation) is employed. Its field-dependent shear stress is then obtained using a rheometer (MCR 300, Physica). In order to show the applicability of the Preisach model to the MR fluid, two significant Properties; the minor loop property and the wiping-out property are experimentally examined. Subsequently, the Preisach model for the MR fluid is identified using experimental first order descending (FOD) curves in discrete manner. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted field-dependent shear stress with the measured one. In addition, the hysteresis model proposed in this work is compared to Bingham model.

  • PDF

Control Performance Investigation of MR Fluid Damper using Herschel-Bulkley Shear Model (Herschel-Bulkley 모델을 이용한 MR 댐퍼 승용차의 제어 성능 고찰)

  • 이덕영;황우석
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.323-328
    • /
    • 2002
  • The control performance of a vehicle installed with an MR(magnetorheological) fluid-based damper is investigated on the basis of Herschel-Bulkley shear model. Generally, most of MR fluid damper has been analyzed based on a simple Bingham-plastic shear model. However, the Bingham-plastic shear model can not well describe the behavior of the damper on the condition of high velocity and high current field input. Therefore, in this study, the Herschel-Bulkley shear model in which the constant post-yield plastic viscosity in Bingham model is replaced with a power law model dependent on shear rate is used to assess control performance of a vehicle with MR fluid damper suspension system. This study deals with a two-degree-of-freedom suspension using the MR fluid damper for a quarter car model. The response for the bump input to identify the fastness of MR fluid damper embedded skyhook controller and requested magnetic field are investigated.

  • PDF

Hysteresis Investigation of Magnetorheological Fluid Using Preisach Model (Preisach모델을 이용한 MR 유체의 히스테리시스 특성 고찰)

  • Han, Y.M.;Lim, K.H.;Choi, S.B.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.1 s.106
    • /
    • pp.3-11
    • /
    • 2006
  • This paper presents a new approach for hysteresis modeling of a magnetorheological (MR) fluid. The field-dependent hysteresis of MR fluid is investigated using the Preisach model. The commercial MR product (MRF-132LD, Lord Corporation) is employed. Its field-dependent shear stress is then obtained using a rheometer (MCR 300, Physica). In order to show the applicability of the Preisach model to the MR fluid, two significant properties; the minor loop property and the wiping-out. property are experimentally examined. Subsequently, the Preisach model for the MR fluid is identified using experimental first order descending (FOD) curves in discrete manner. The effectiveness of the identified hysteresis model is verified in the time domain by comparing the predicted field-dependent shear stress with the measured one. In addition, the hysteresis model proposed in this work is compared to Bingham model.

Development of Analysis Model for Characteristics Study of Fluid Power Systems in Injection Molding Machine (사출성형기 유압시스템의 특성 검토를 위한 해석 모델 개발)

  • Jang, J.S.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.4
    • /
    • pp.1-8
    • /
    • 2011
  • Injection molding machine is the assembly of many kinds of mechanical and fluid power part and electro-electronic control system. From in these, fluid power is a part where becomes the first core of this machine. Fluid power systems of injection molding machine are modelled and analyzed using a commercial program AMESim. The analysis model which is detailed about the parts applied a publishing catalog data. Sub system models which is divided according to functional operation are made and its analysis results shows how design parameters work on operational characteristics like displacement, pressure, flow rates at each node and so on. Total fluid power circuit model is also made and analyzed. The results made by analysis will be used design of fluid power circuit of injection molding machine.

The Theoretical Investigation of the Natural Frequency Coefficients for a Thin Rectangular Tube used in the Heat Exchanger (열교환기에 사용되는 얇은 사각 단면 튜브의 고유규진동계수에 대한 이론적 분석)

  • 김기만
    • Journal of KSNVE
    • /
    • v.5 no.3
    • /
    • pp.373-383
    • /
    • 1995
  • From the viewpoint of the structural design, the principal problem of the heat exchanger is the potentiality of structural instabilities due to the fluid loading effect during operations. Excessive fluid loading may give rise to permanent deformation of tube and would enentually result in collapse of heat exchanger, which would cause an obstruction of the fluid flow in the narrow channels. In this study, a fluid-structural interaction model was developed to investigate analtically the vibration characteristics of thin rectangular tube used in the heat exchanger. The model consists of two flat plates separated by fluid. The effects of the fluid in the tube was stuided. For analyses, the natural frequency coefficients of the model were investigated for the plate aspect ratios, channel heights, and boundary conditions. As conclusions, the natural frequency coefficients of the tube is found to be affected largely by the fluid loading and the channel heights.

  • PDF

EXTENSION OF AUSMPW+ SCHEME FOR TWO-FLUID MODEL

  • Park, Jin Seok;Kim, Chongam
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.17 no.3
    • /
    • pp.209-219
    • /
    • 2013
  • The present paper deals with the extension of AUSMPW+ scheme into two-fluid model for multiphase flow. AUSMPW+ scheme is the improvement of a single-phase AUSM+ scheme by designing pressure-based weighting functions to prevent oscillations near a wall and shock instability after a strong shock. Recently, Kitamura and Liou assessed a family of AUSM-type schemes with two-fluid model governing equations [K. Kitamura and M.-S. Liou, Comparative study of AUSM-Family schemes in compressible multi-phase flow simulations, ICCFD7-3702 (2012)]. It was observed that the direct application of the single-phase AUSMPW+ did not provide satisfactory results for most of numerical test cases, which motivates the current study. It turns out that, by designing pressure-based weighting functions, which play a key role in controlling numerical diffusion for two-fluid model, problems reported in can be overcome. Various numerical experiments validate the proposed modification of AUSMPW+ scheme is accurate and robust to solve multiphase flow within the framework of two-fluid model.

Level Set Advection of Free Fluid Surface Modified by Surface Tension

  • Pineda, Israel;Gwun, Oubong
    • Smart Media Journal
    • /
    • v.4 no.2
    • /
    • pp.9-16
    • /
    • 2015
  • Fluids appear in innumerable phenomena; therefore, it is interesting to reproduce those phenomena by computer graphics techniques. However, this process is not trivial. We work with a fluid simulation that uses Navier-Stokes equations to model the fluid, a semi-Lagrangian approach to solve it and the level set method to track the surface of the fluid. Modified versions of the Navier-Stokes equations for computer graphics allow us to create a wide diversity of effects. In this paper, we propose a technique that allows us to integrate a force inspired by surface tension into the model. We describe which information we need and how to modify the model with this new approach. We end up with a modified simulation that has additional effects that might be suitable for computer graphics purposes. The effects that we are able to recreate are small waves and droplet-like formations close to the surface of the fluid. This model preserves the overall behavior governed by the Navier-Stokes equations.