• 제목/요약/키워드: Fluidic oscillation

검색결과 5건 처리시간 0.022초

Fluidic 유량계의 기하학적 변수가 유동률에 미치는 영향 (Effects of geometric parameters of fluidic flow meter on flow rate)

  • 박경암;윤기영;유성연
    • 대한기계학회논문집B
    • /
    • 제21권12호
    • /
    • pp.1608-1614
    • /
    • 1997
  • The fluidic flow meter detects the gas flow rate based on the principle of fluidic oscillation instead of the conventional displacement method. It has many merits: wide rangeability, no moving mechanical parts and calibration insensitive to physical properties of fluids. The width of nozzle, size of oscillation chamber, size of target, width of outlet are tested to obtain the effects of jet oscillation on the fluidic flow meter. As the width of nozzle is too wide compared with the size of target, jet oscillation is unstable. The oscillation frequency decreases as the distance between the nozzle and target increases and also as the distance between target and outlet contraction increases. Two different vortexes exist in the front and the rear regions of the target, and they affect the oscillation frequency. The outlet contraction is very important, because the feedback flow is generated by the blocking of the flow. As the width of outlet increases, the jet oscillation frequency decreases. The linearity of this tested flow meter is quite good.

스플리터 단면형상변화에 따른 플라스틱 유량계의 유동진동특성 (Fluidic oscillation characteristics of plastic flow meter with the variation of cross-sectional shape of splitters)

  • 이성희
    • Design & Manufacturing
    • /
    • 제15권2호
    • /
    • pp.56-62
    • /
    • 2021
  • In this study, design technology of a non-mechanical flow meter using fluidic oscillation generated during the fluid flow in the chamber was investigated. To with respect to design a splitter, which is the most important factor in fluid oscillation, a transient flow simulation analysis was performed for three types of shapes and changes in inlet flow velocity. The oscillation characteristics with respect to the time in each case were compared, and it was confirmed that the SM03 model was the best among the presented models. In addition, the FFT analysis of the fluid oscillation results for the SM03 model was used to obtain a linear correlation between the flow velocity change and the maximum frequency, and a frequency of 20.957 (Hz/m/s) per unit flow velocity was obtained. Finally, injection molding simulation and molding experiment of the chamber with the designed splitter were performed.

A Study on the Characteristics of an Oscillating Fluidic Atomizer

  • Kim, K.H.;Kiger, K.;Lee, W.
    • 한국분무공학회지
    • /
    • 제11권2호
    • /
    • pp.105-112
    • /
    • 2006
  • A unique feature of fluidic atomizers is that the nozzle geometry produces a thin capillary Jet which is forced to oscillate on a 2-dimensional plane through the use of a passive feedback mechanism. The objective of the current work is to characterize the influence of the stagnation pressure at the nozzle exit, jet oscillation and stretching on the breakup properties of the capillary ligament. To achieve this, shadow graph technique is used to measure size, shape, velocity and the number density of the droplets as a function of the position within the spray fan. The breakup length, defined as the radial distance from the breakup point, is analyzed as a function of the non-dimensional parameters. Finally, a kinematic model is developed to simulate the breakup of the oscillating jets at low stagnation pressures. Using the existing jet breakup theories, the model is used to predict the size and diameter distribution of the droplets after primary atomization.

  • PDF

유체진동기의 형상 변화가 성능에 미치는 영향 (EFFECTS OF FLUIDIC OSCILLATOR GEOMETRY ON PERFORMANCE)

  • 정한솔;김광용
    • 한국전산유체공학회지
    • /
    • 제21권3호
    • /
    • pp.77-88
    • /
    • 2016
  • A parametric study on a fluidic oscillator was performed numerically in this work. Three-dimensional unsteady Reynolds-averaged Navier-Stokes equations were solved to analyze the flow in the fluidic oscillator. As turbulence closure, $k-{\varepsilon}$ model was employed. Validation of the numerical results was performed by comparing numerical results with experimental data for frequency of the oscillation. The parametric study was performed using five geometric parameters. Performance of the fluidic oscillator was evaluated in terms of velocity ratio and pressure drop. The results show that the inlet channel width and the distance between splitters are important factors in determining the performance of the fludic oscillator.

공유피드백 유로를 갖는 초음속 유체진동기의 진동특성에 관한 연구 (A Study of Oscillation Characteristics of Supersonic Fluidic Oscillator With Shared Feedback Channel)

  • 이승헌;박상훈;고희창;서송현;이열
    • 한국항공우주학회지
    • /
    • 제48권3호
    • /
    • pp.167-174
    • /
    • 2020
  • 내부에 공유피드백 유로를 갖는 공유형 초음속 유체진동기에서 나타나는 유동특성에 관한 연구가 수행되었다. 비정상 전산유체역학적 해석이 수행되었고 수치해석 결과는 동일한 운용조건에서 수행된 실험결과와 비교 검증되었다. 수치해석 결과, 공유피드백 유로가 해당 유체진동기의 진동 메커니즘에 큰 영향을 주어 진동기 출구 각 제트유동의 동조화에 큰 역할을 하고 있음이 확인되었다. 공유형 유체진동기는 동일 형상의 단일형 유체진동기와 비교하여 진동수가 증가하나 압력손실 또한 커짐이 확인되었다.