• Title/Summary/Keyword: Foaming

Search Result 632, Processing Time 0.028 seconds

The Investigation of Rheological Properties Development for Polymer Matrix Including Foaming Agent

  • Lee, Seung Hak;Kim, Dong Gun;Lim, Sung Wook;Park, Eun Young;Park, Tae Sun;Hyun, Kyu
    • Elastomers and Composites
    • /
    • v.51 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • Sole in the footwear usually modified with foaming agent on the polymer resin to improve the lightweightness and crush-cushion effect. In this study, we investigated rheological properties for polymer resin filled with the different type and concentration of foaming agent, capsule type foaming agent and organo-chemical foaming agent, under the time sweep test. Curing times of each polymer resin with different kind of foaming agent are delayed than reference material (epoxy resin with curing agent). In case of adding capsule type foaming agent, however, there is appropriate concentration to reduce the curing time, relatively. When foaming agent is activated, foaming force inflates the sample in contrast to condensation force of curing and then axial normal force develop to the (+) direction. Interestingly, by increase concentration of foaming agent, there is a specific point to break down the axial normal force development. The reason for this phenomenon is that coalescence of foams induce the blocking of axial normal force development.

Characteristics of Complex Foaming Composites' Normal Pressure Foaming of Using Rubber and Bio-Degradable Materials

  • Dong Hun Han;Young Min Kim;Dan Bi Lee;Kyu Hwan Lee;Han-Seong Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.8
    • /
    • pp.323-329
    • /
    • 2023
  • There are many types of foam molding methods. The most commonly used methods are the pressure foaming method, in which foam resin is mixed with a foaming agent at high temperature and high pressure, and the normal pressure foaming method, which foams at high temperature without pressure. The polymer resins used for foaming have different viscosities. For foaming under normal pressure, they need to be designed and analyzed for optimal foaming conditions, to obtain resins with low melt-viscosity or a narrow optimal viscosity range. This study investigated how changes in viscosity, molding temperature, and cross-link foaming conditions affected the characteristics of the molded foam, prepared by blending rubber polymer with biodegradable resin. The morphologies of cross sections and the cell structures of the normal pressure foam were investigated by SEM analysis. Properties were also studied according to cross-link/foaming conditions and torque. Also, the correlation between foaming characteristics was studied by analyzing tensile strength and elongation, which are mechanical properties of foaming composites.

Application of a Microcellular Foaming Process of Mixed Materials of LDPE, EVA and Foaming Agent and Estimation of Influence of Each Factor (LDPE, EVA 및 발포제 혼합재료의 초미세 발포 공정 적용과 각 인자의 영향성 평가)

  • Park, Dae-Keun;Cha, Sung-Woon;Hwang, Yun-Dong
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.853-858
    • /
    • 2001
  • Generally, mixed materials of LDPE, EVA and foaming agent are manufactured by crosslinking foaming or chemical foaming process. Above materials were used in a microcellular foaming injection molding process. Influence of each factor such as injection type, temperature of barrel, rate of mixed materials and contents of foaming agent was estimated by DOE(Design of Experiments). As a result of experiments, injection type and rate of LDPE, EVA have an influence on foaming rate. This data can be used in field of application of LDPE and EVA.

  • PDF

Experimental Studies on Influence of Foaming Agents on the Properties of Mortar (기포제가 모르터의 제성질에 미치는 영향에 관한 실험적 연구)

  • Sung, Chan-Yong;Hwang, Eun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.1
    • /
    • pp.46-61
    • /
    • 1985
  • This study was performed to obtain the basic data which can be applied to the use of foaming mortars. The data was based on the properties of foaming mortars depending upon various mixing ratios and addings to compare those of cement mortar. The foaming agents which was used at this experiment were pre-foamed type and mix-foaming type which is being used as mortar structures. The foaming mortar, mixing ratios of cement to fine aggregate were 1:1, 1: 2, 1 : 3 and 1 : 4. The addings of foaming agents were 0.0%, 0.5%, 1.0%, 1.5%, 2.0%, 2.5% and 3.0% of cement weight. The results obtained were summarized as follows; 1. At the mixing ratio of 1 : 1, the lowest water-cement ratios were showed by foaming mortars, respectively. But it gradually was increased in poorer mixing ratio and decreased in more addition of foaming agent. The water-cement ratios were decreased up to 1. 8~22. 0% by G, 2. 2~24. 1 % by U and 0. 7~53. 1% by J foaming mortar than cement mortar. 2, At the mixing ratio of 1 : 1, the highest bulk densities were showed by foaming mortars, respectively. But, it gradually was decreased in poorer mixing ratio and more addition of foaming agent. The bulk densities were decreased up to 1. 4~20. 7% by G, 2. 3~23. 7% by U and 26. 5~56. 5% by J foaming mortar than cement mortar. Therefore, foaming mortar could be utilized to the constructions which need low strengths. 3. At the mixing ratio of 1:1, the lowest absorption rates were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Specially, according to the absorption rate when immersed in 72 hours, the absorption rates were showed up to 1. 01~1. 24 times by G, 1. 03~1. 58 times by U and 1. 10~5. 91 times by J foaming mortar than cement mortar. It was significantly higher at the early stage of immersed time than cement mortar. 4. At the mixing ratio of 1:1, the lowest air contents were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Air contents were contented up to 4. 0~17. 2 times by G, 5. 2~23. 2 times by U and 23. 8~74. 5 times by J foaming mortar than cement mortar. 5. At the mixing ratio of 1 : 1, the lowest decreasing rates of strengths were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. Specially, the strengths of 28 days were decreased 0. 4~2. 2% than those of 7 days by foaming mortar, respectively. Also, the correlations between compressive and tensile strength, compressive and ending strength, tensile and bending strength were highly significant as a straight line shaped, respectively. 6. The correlations between absorption rate, air content, compressive strength and bulk density, absorption rate, compressive strength and air content were highly significant, respectively. The multiple regression equations of water-cement ratio, bulk density, absorption ate, air content, compressive strength, tensile strength and bending strength were computed depending on a function of mixing ratio and addition of foaming agent. It was highly significant, respectively. 7. At the mixing ratio of 1 : 1, the highest strengths were showed by cement mortar and foaming mortars, by chemical reagents. But, it gradually was decreased in poorer mixing ratio. The decreasing rates of strengths were in order of H $_2$S0 $_4$, HNO$_3$ and HCI, J,U,G foaming mortar and cement mortar. Specially, at the each mixing ratio, each chemical reagent and 3.0% of foaming agent, J foaming mortar was collapsed obviously. Therefore, for the structures requiring acid resistence, adding of foaming agent should be lower than 3.0%.

  • PDF

An Experimental Study on Properties of Foam According to Concentration of Vegetable and Mixed Foaming Agent and Properties of Foamed Concrete According to Replacing Ratio of Foaming Agent (식물성 및 혼합 기포제의 농도에 따른 기포 특성과 혼입량에 따른 기포 콘크리트의 물성에 관한 실험적 연구)

  • Jeong, Seong-Min;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.10a
    • /
    • pp.22-23
    • /
    • 2016
  • This study analyzes the properties of foam according to the concentration of vegetable foaming agent that is used in traditional and mixed foaming agent of developing stage, and confirms how the foams influence foamed concrete by searching for properties of foamed concrete according to replacing ratio of vegetable foaming agent and mixed foaming agent. This is for the purpose of providing basic data for the use of foamed concrete through improvement on the problem such as unstability, falling in fluidity and the strength of existed foaming agent.

  • PDF

Cell morphology of microcellular foaming injection molding products with pressure drop rate (초미세 발포 사출 시 핵 생성장치를 이용한 셀 크기의 변화)

  • 김학빈;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.491-495
    • /
    • 2004
  • The industries use polymer materials for many purposes for they have many merits. The costs of these materials take up too great a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2$, $N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. This characteristic of microcellular foaming process has influenced by cell morphology. The cell morphology means cell size and cell density. The cell morphology has influenced by many factors. The examples of factor are pressure drop rate, foaming temperature, foaming time, saturation pressure, saturation time etc. Among their factors, pressure drop rate is the most important factor for cell morphology in microcellular foaming injection molding process. This paper describes about the cell morphology change in accordance with the pressure drop rate of microcellular foaming injection molding process.

  • PDF

Experimental Studies on the Characteristics of Foaming Mortar(I)- Part 1 characteristics of bulk density and absorption rate - (기포모르터의 제특성에 관한 실험적 연구-제1보 밀도와 흡수율 특성)

  • 성찬용
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.30 no.1
    • /
    • pp.73-80
    • /
    • 1988
  • This study was performed to obtain the basic data which can be applied to use of foaming mortars. The results obtained were Summarized as follows; 1.At the mixing ratio of 1:1, the highest bulk densities were showed by foaming mortars, respectively. But, it gradually was decreased in poorer mixing ratio and more addition of foaming agent. The decreasing rates of bulk densities were increased in richer mixing ratio and more addition of foaming agent. 2.The bulk densities were decreased up to 38.8-55.9% by mix-foaming type and 9.7-23.6% by pre-foamed type than cement mortar. 3.At the mixing ratio of 1:1, the lowest absorption rates were showed by foaming mortars, respectively. But, it gradually was increased in poorer mixing ratio and more addition of foaming agent. The increasing rates of absorption rates were increased in richer mixing ratio and more addition of foaming agent. 4.Absorption rates when immersed in 72hours were showed up tp 3.41-5.85 times by mix-foaming type and 1.05- 1.S5times by pre -foamed type than cement mortar, it was significantly higher at the early stage of immersed time than cement mortar. 5.The correlations between bulk density and absorption rate were highly singnificant, respectively. The multiple regression equations of bulk density and absorption rate were computed depending on a fuction of mixing ratio and addition of foaming agent. it was highly significant respectively.

  • PDF

The Fundamental Study on the Properties of Foam for Foamed Concrete (기포 콘크리트용 기포의 특성에 관한 기초 연구)

  • Kawg, Eun-Gu;Kang, Gie-Hyun;Kang, Cheol;Kwon, Ki-Joo;Kim, Jin-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.680-683
    • /
    • 2004
  • This study is to obtain basic data concerned with properties of foam for foamed concrete and foaming method. Main factors of this study are types of foaming agents, temperature of solution with foaming agents, and types of foam generator. Testing items are size distribution of foam, foaming ratio to solution, and stability of foam. The results of this study were shown as follow. It is optimum condition of foam generator that length/diameter of foaming tube is 2.0, bead size within foaming tube is $4\~6mm$, and nozzle size of foaming tube is 10mm. AES and AOS are good results to produce high quality foam, and stability of foam is good in foaming temperature of $20^{\circ}C$.

  • PDF

A Study of Electro-foaming Fusion Wrap for Polyethylene Sewer Pipe (폴리에틸렌 하수관 연결용 전기발포융착 이음관에 관한 연구)

  • Kye, Hyoung-San;Joo, Kyung-Hoon
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.26 no.3
    • /
    • pp.343-354
    • /
    • 2012
  • A electro-foaming fusion wrap fitting for polyethylene sewer pipe was built and foaming mechanism has been studied. A foaming sheet, supporting sheet and clamping band is assembled into a all-in-one structured electro-foaming fusion wrap fitting. To specify foaming and fusion of electro-foaming fusion wrap for PE sewer pipe, series of fusion tests were performed in various conditions. A parallel plate compression test up to 50 % of inner diameter deflection has been performed to check integrity of fusion quality and it was found that there were no visible signs of crack in wrapped area of fitting. Also air tightness test based on KS M 3511-2 has been performed to evaluate perfectness of wrap fusion quality and we found there were no pressure drop up to 10 times higher value than KS standard regulation.

The Foaming Characteristics of Microcellular Processing with Polypropylene in Semicrystalline States (결정성 수지의 발포특성)

  • Lee, Bo-Hyoung;Cha, Sung-Woon;Yoon, Jae-Dong
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1828-1833
    • /
    • 2003
  • In a foaming process of microcellular plastics (MCPs) with a batch process, amorphous plastics and crystalline plastics have different characteristics for a foaming temperature. It is known that a foaming of amorphous plastics occurs at the temperature above a glass transition temperature, however, it is discovered that crystalline plastics do not take place above a glass transition temperature without exception, and even though the foaming occurs, it does not in all the range. In this research, to measure foaming temperature of crystalline polymer, a foaming experiment was performed using one of the typical crystalline polymer, polypropylene. To analyze whether the foaming occurs both at amorphous and crystalline fields, SEM was applied

  • PDF