• Title/Summary/Keyword: Follower load

Search Result 79, Processing Time 0.032 seconds

Buckling of FGM elliptical cylindrical shell under follower lateral pressure

  • Moradi, Alireza;Poorveis, Davood;Khajehdezfuly, Amin
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.175-191
    • /
    • 2022
  • A review of previous studies shows that although there is a considerable difference between buckling loads of structures under follower and non-follower lateral loads, only the buckling load of FGM elliptical cylindrical shell under non-follower lateral load was investigated in the literature. This study is the first to obtain the buckling load of elliptical FGM cylindrical shells under follower lateral load and also make a comparison between buckling loads of elliptical FGM cylindrical shells under follower and non-follower lateral loads. Moreover, this research is the first one to derive the load potential function of elliptical cylindrical shell. In this regard, the FGM cylindrical elliptical shell was modeled using the semi-analytical finite strip method and based on the First Shear Deformation Theory (FSDT). The shell is discretized by strip elements aligned in the longitudinal direction. The Lagrangian and harmonic shape functions were considered in the circumference and longitudinal directions, respectively. The buckling pressure of the shell under follower and non-follower lateral loads was obtained from eigenvalue problem. The results obtained from the model were compared with those presented in the literature to evaluate the validity of the model. A comparison index was defined to compare the buckling loads of the shell under follower and non-follower lateral load. A parametric study was carried out to investigate the effects of material properties and shell geometry characteristics on the comparison index. For the elliptical cylindrical shells with length-to-radius ratio greater than 16 and major-to-minor axis ratio greater than 0.6, the comparison index reaches to more than 20 percent which is significant. Moreover, the maximum difference is about 30 percent in some cases. The results obtained from the parametric study indicate that the buckling load of long elliptical cylindrical shell under non-follower load is not reliable.

The Effect of a Compressive Follower Pre-load on the Ligament of Lumbar Spine and the Relationship with Low Back Pain (압축 종동 예하중이 요추 인대에 미치는 영향과 요통과의 관계)

  • Moon, Chang-Hyun;Chung, Tae-Eun;Sin, Hyo-Chol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.6
    • /
    • pp.63-69
    • /
    • 2010
  • A noble model of the whole lumbar spine (L1~L5) considering all the passive elements, especially the ligaments of the lumbar spine was developed. The purpose of this study was to investigate the relationship between the shear stress of the AVB and the ALL and the effect of a compressive follower pre-load on all ligaments with various motions. The result shows that the shear stress at the AVB and the ALL are positively correlated. This indicates that the shear stress of the ligament can be used an index of low back pain. Regarding the effect of a follower pre-load, contrary to our expectation, the shear stress of the ligaments was not always reduced by applying follower pre-load; flexion was decreased and axial rotation did not change, while extension and lateral bending were increased.

Analysis of Shell Structures Subjected to Deformation Dependent Pressure Load (변형종속 압력하중을 받는 셸구조물의 해석)

  • Jang, Myung-Ho;Kwun, Taek-Jin
    • Journal of Korean Association for Spatial Structures
    • /
    • v.2 no.1 s.3
    • /
    • pp.93-102
    • /
    • 2002
  • Pressure loads caused by gas, water and wind are the most important load cases in structural analysis. Often the pressure loads are approximated by constant directional loads since it is difficult to evaluate the exact value. However, the pressure load is defined as a displacement dependent one and it is necessary to consider the follower effects of the load in analysis procedure. In this study, the large deformation analysis considering geometrical nonlinearity for shell structures under pressure loads is presented. Finite element by using a three-node flat triangular shell element is formulated and the follower effects of the pressure load are included in the formulation. Some of results are presented for cantilevered beam under uniform external pressure and thin circular ring under non-uniform external pressure. The present results are in good agreement with the results available in existing literature and commercial software ABAQUS.

  • PDF

Stability Analysis of Beck's Column (Beck 기둥의 안정성 해석)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Kang, Hee-Jong;Kim, Gwon-Sik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.903-906
    • /
    • 2005
  • The purpose of this paper is to investigate free vibrations and critical loads of the uniform Beck's columns with a tip spring, carrying a tip mass. The ordinary differential equation governing free vibrations of such Beck's column subjected to a follower force is derived based on the Bernoulli-Euler beam theory. Both the divergence and flutter critical loads are calculated from the load-frequency curves that are obtained by solving the differential equation numerically. The critical loads are presented in the figures as functions of various non-dimensional system parameters such as the mass moment of inertia and spring parameter.

  • PDF

Effect of viscous Damping on the Stability of Beam Resting on an Elastic Foundation Subjected to Dry friction force (점성감쇠가 건성마찰력을 받는 탄성지지 보의 안정성에 미치는 효과)

  • 장탁순;고준빈;류시웅
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.11
    • /
    • pp.179-185
    • /
    • 2004
  • The effect of viscous damping on stability of beam resting on an elastic foundation subjected to a dry friction force is analytically studied. The beam resting on an elastic foundation subjected to dry friction force is modeled for simplicity into a beam resting on Kelvin-Voigt type foundation subjected to distributed follower load. In particular, the effects of four boundary conditions (clamped-free, clamped-pinned, pinned-pinned, clamped-clamped) on the system stability are considered. The critical value and instability type of columns on the elastic foundation subjected to a distributed follower load is investigated by means of finite element method for four boundary conditions. The elastic foundation modulus, viscous damping coefficient and boundary conditions affect greatly both the instability type and critical load. Also, the increase of damping coefficient raises the critical flutter load (stabilizing effect) but reduces the critical divergence load (destabilizing effect).

Analysis of Compression Behavior on Intervertebral Disc L4-5 in Pedicle Screw System Instrumented Lumbar Spine under Follower Load (척추경 나사못을 이용한 척추 유합술에서 고정범위에 따른 인접 추간판의 압축 거동 분석)

  • Ahn, Myun-Whan;Ahn, Jong-Chul;Lee, Su-Ho;Chung, Il-Sub;Lee, Choon-Yeol;Lee, Jang-Woo
    • Journal of Yeungnam Medical Science
    • /
    • v.20 no.2
    • /
    • pp.160-168
    • /
    • 2003
  • Background: Confirm the stability of intervertebral disc sustaining each fused lumbar spine cases, comparing vertical compression, A-P shear force and rotational moment on intervertebral disc of instrumented lumbar spine with simple vertical compression load and follower load using finite element analysis. Materials and Methods: We analyze the stability of intervertebral disc L4-5 supporting fused lumbar spine segments. After performing finite element modelling about L1-L5 lumbar vertebral column and L1-L4 each fusion level pedicle screw system for fused lumbar spine fine element model. Intervertebral discs with complex structure and mechanical properties was modeled using spring element that compensate stiffness and tube-to-tube contact element was employed to give follower load. Performing geometrical non-linear analysis. Results: The differences of intervertebral disc L4-5 behavior under the follower compression load in comparision with vertical compression load are as follows. Conclusion: As a result of finite element interpretation of instrumented lumbar spine, the stability of L4-5 sustaining fused lumbar segment, the long level fused lumbar spine observed hing stability under follower load. This research method can be the basis tool of effects prediction for instrumentation, a invention of a more precious finite element interpretation model which consider the role of muscle around the spine is loaded.

  • PDF

Effects of Crack on Stability Timoshenko Beam Subjected to Follower Force (종동력을 받는 티모센코 보의 안정성에 미치는 크랙의 영향)

  • Ahn, Tae-Su;Son, In-Soo;Yoon, Han-Ik
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.344-347
    • /
    • 2007
  • In this paper, the stability of a cracked cantilever beam subjected to follower force is presented. In addition, an analysis of the flutter instability(flutter critical follower force) of a cracked cantilever beam subjected to a follower compressive load is presented. Based on the Timoshenko beam theory. The vibration analysis on such cracked beam is conducted to identify the critical follower force for flutter instability based on the variation of the first two resonant frequencies of the beam. Besides, the effect of the crack's intensity and location on the flutter follower force is studied. The crack section is represented by a local flexibility matrix connecting two undamaged beam segments. The crack is assumed to be in the first mode of fracture and to be always opened during the vibrations. Generally, the critical follower force for flutter is proportional to the crack depth.

  • PDF

Dynamic Stability of Cylindrical Shells Subjected to Follower Forces (종동력을 받는 원통셸의 동적 안정성에 관한 연구)

  • 김현순;김지환
    • Journal of KSNVE
    • /
    • v.8 no.2
    • /
    • pp.336-345
    • /
    • 1998
  • The dynamic instability of cylindrical shell with clamped-free boundary condition subjected to constant follower force or $P_0 + P_1cos {\Omega}_t$ type pulsating follower force is analyzed. The motion of shell is modeled using the shell theory considering rotary inertia and shear deformation, and analyzed with finite element method. In case of constant follower force, the changes of eigenvalues dependent on the magnitude of applied load are investigated and the critical loads are obtained. In case pulsating follower force, instability regions of exicitation frequency are obtained by modal transform with right and left modal matrix and by multiple scales method. The effects of thickness ratio and aspect ratio on the instability of shell are studied.

  • PDF

Follower Effect of the Axisymmetric Shells under External Pressure (축대칭 쉘 구조물에 작용하는 외압의 부가효과)

  • Hwang, Chul-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.1
    • /
    • pp.195-202
    • /
    • 2004
  • The shell due to the effect of initial normal pressures on the shell surface was based on the assumption that the directions of the pressures are always normal to the undeformed shell surface, and that the change in the surface area of the shell is negligible. But the fact that the pressure are always normal to the deforming surface leads "follower force". The follower effect in the analysis can significantly alter the solution for natural frequency and buckling load as compared to the case when the direction of the pressures are assumed to be normal to the uniform shell surface. The expression for the part of strain energy contribution from normal pressure due to the effect of follower force was derived and added to the element stiffness matrix of axisymmetric shell. In the case of increasing external pressure, the natural frequencies decrease until one of them reaches zero. Theoretically the smallest applied load that reduces the frequency of any mode to zero, will have same magnitude as that of the buckling load. In order to determine the bucking load of the shell a few sets of frequencies are computed and the results considering the follower effects are well with the exact solution while the case without that are quite different. But in case of hemispherical dome, there are little difference in buckling pressure between with and without the effect of follower force.