• Title/Summary/Keyword: Force of fire

Search Result 208, Processing Time 0.027 seconds

Analysis on Deployment of Fire Service Force in Korea (한국 소방력배치의 실태 분석)

  • Back, Min-Ho;Lee, Hae-Pyeong
    • Fire Science and Engineering
    • /
    • v.20 no.1 s.61
    • /
    • pp.55-70
    • /
    • 2006
  • The purpose of this study is to analyze an adequate deployment of fire service force to be prepared to respond appropriately and effectively in Korea by settlement pattern. In order to examine the deployment of fire service force by the present standard, we analyzed the logical basis and the deployment of fire service force by city and province. We also classified clusters for settlement pattern through the statistical methods and raised several points for the existing deployment model of fire service force by the classified settlement pattern. As a result, it was confirmed that the deployment of fire service force by the settlement pattern was irrelevant to fire service need.

A Study on Improvement of Fire Service Deployment Standard in Korea (한국 소방력배치 기준의 개선에 관한 연구)

  • Lee, Hae-Pyeong;Back, Min-Ho
    • Fire Science and Engineering
    • /
    • v.20 no.1 s.61
    • /
    • pp.28-42
    • /
    • 2006
  • The purpose of this study is to offer the improvement for deployment of fire service force in Korea by settlement patterns on the basis of analysis for the present standard and deployment of fire service force. For the adequate deployment and operation of fire service force by settlement patterns, we carried out the analysis of the present standard calculated with allocation of the authorized strength. We also classified clusters for settlement pattern through the statistical methods. We proposed the standard for deployment of fire service force reflected with environmental and need factors through the introduction of standardized index.

The Method of Force of Fire in High-Rise Building by Guide to the Fire Safety Concepts Tree: Focusing on Manually Fire Suppression Strategy (화재안전트리 이론에 따른 초고층건축물의 소방력 공급방안: 수동화재진압 전략을 중심으로)

  • Oh, Seong-Ju;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.79-88
    • /
    • 2020
  • This study analyzes the issue of the supply of force of fire in the high-rise buildings, and proposes an efficient method to do so. The results are as follows. First, in terms of Detect fire, it is necessary to shorten force of fire supply time by diversifying fire alarms such as alarms, vibrations, and voices from outside, clarification of fire occurrence points, and marking of fire. Second, with regard to communication signals, strengthening the installation target of wireless communication auxiliary facilities, supplementing the installation of repeaters, and constructing a multicommunications network were proposed. Third, in terms of Decide action, it is necessary to supply firefighter and firefighting equipment with the method of crossing of a river in adjacent buildings. Fourth, in terms of Respond to site, helicopters and emergency elevators are used to assist in the supply of firefighting equipment using drones. Easy-to-break glass windows and identification marks are required in every floor. Finally, in terms of applying fire suppressants, water can be supplied by means of a helicopter adjacent to the structure.

A Study on the Conditions of Injection Pressurization in the Smoke-Control Zone II. Analysis of the Conditions for Closing Force of Fire Door with Variation of Angular Velocity (제연구역 방화문의 각속도 변화와 폐쇄 조건 분석)

  • Lee, Chang-Wook;Kim, Hong-Jin;Choi, Young-Ki;Youm, Moon Cheon;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.6-10
    • /
    • 2013
  • This study aims to construct the performance data for smoke-control zone and realize the safety of injection and pressurization room which is composed of supply air pressure zone, vestibule, smoke-control zone and stairwell. To obtain this, smoke-control system and the device of the opening-closing force of fire door are manufactured. This subject is the analysis of the closing force, angular velocity and fire door size in the case of fixed volume flow rate. Based on the results, closing force increased as fire door size and closing angular velocity increases. Also, it is remark that there exists a critical angular velocity, which maintains constant maximum closing force even though the angular velocity increases more.

Analysis for fire suppression efficiency of intermittent water spray pattern with FDS (FDS를 이용한 교번식 미분무방식의 소화 성능 분석)

  • Jee, Moon-Hak;Lee, Byung-Kon
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.200-203
    • /
    • 2008
  • Water mist fire suppression system utilizes the fire suppression features such as cooling of fire source, dilution of ambient oxygen, and shielding of radiation heat with the evaporation of microscopic water droplets. The momentum of water mist is relatively low and the infiltration of water mist to the fire source is not effective. In addition to lower penetration force, the evaporated water vapor is liable to decline to limited portion of fire source due to its light weight and sparse density. On the other hand, the cycling water mist system is expected to improve the penetration force of water mist as well as the dilution coverage capability with the stratified spray characteristics. At this paper we present the analyzed fire suppression capability of intermittent water spray pattern by use of FDS which is computational fire dynamics fire model. We expect this analysis shall be supportive to the development of the prototype of water mist nozzle.

  • PDF

Analysis of restrained steel beams subjected to heating and cooling Part I: Theory

  • Li, Guo-Qiang;Guo, Shi-Xiong
    • Steel and Composite Structures
    • /
    • v.8 no.1
    • /
    • pp.1-18
    • /
    • 2008
  • Observations from experiments and real fire indicate that restrained steel beams have better fire-resistant capability than isolated beams. Due to the effects of restraints, a steel beam in fire condition can undergo very large deflections and the run away damage may be avoided. In addition, axial forces will be induced with temperature increasing and play an important role on the behaviour of the restrained beam. The factors influencing the behavior of a restrained beam subjected to fire include the stiffness of axial and rotational restraints, the load type on the beam and the distribution of temperature in the cross-section of the beam, etc. In this paper, a simplified model is proposed to analyze the performance of restrained steel beams in fire condition. Based on an assumption of the deflection curve of the beam, the axial force, together with the strain and stress distributions in the beam, can be determined. By integrating the stress, the combined moment and force in the cross-section of the beam can be obtained. Then, through substituting the moment and axial force into the equilibrium equation, the behavior of the restrained beam in fire condition can be worked out. Furthermore, for the safety evaluation and repair after a fire, the behaviour of restrained beams during cooling should be understood. For a restrained beam experiencing very high temperatures, the strength of the steel will recover when temperature decreases, but the contraction force, which is produced by thermal contraction, will aggravate the tensile stresses in the beam. In this paper, the behaviour of the restrained beam in cooling phase is analyzed, and the effect of the contraction force is discussed.

A Study on the Preplanned Target Allocation Problem for Minimizing Fire Time of Field Artillery (포병부대 계획표적 사격시간 단축을 위한 표적할당에 관한 연구)

  • Hwang, Won-Shik;Chun, Youn-Hwan;Phak, Hyon-Su;Youn, Sang-Heom
    • Journal of the military operations research society of Korea
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2010
  • Fire sequencing problem is to find a sequence of firing on the targets. The latest, because the korea artillery force is inferior in number as compared with north korea force. It is an important question to give a fatal damage to the enemy force by using prompt and accurate fire in order to overcome the lack of artillery force. Minimizing the fire finishing time will secure the adapt ability in tactical operation. In this paper, we developed a mathematical model to do allocation the fire on the targets to decrease to total fire operation time. In order to work out the fire sequencing problem, MIP is developed and the optimum solution is obtained by using ILOG OPL. If this analytical model is applied to the field artillery unit, it will improve the artillery fire force enhancement.

A Study on Application Formulas of The Reaction Force (반발력 적용식에 대한 연구)

  • Jeong, Kee-Sin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2011.11a
    • /
    • pp.91-95
    • /
    • 2011
  • There are a few formulas to calculate the reaction force. I have studied these formulas for how to derive and where to use. And also have studied what do we careful to apply to actual fire protection systems such as nozzle of indoor and out door hydrant system. I suggested appropriate method to calculate the reaction force.

  • PDF

An Analytical Study on Encased Steel Composite Columns Fire Resistance According to Axial Force Ratio (화재시 축력비에 따른 매입형 합성기둥의 내화성능에 대한 해석적 연구)

  • Kim, Ye-Som;Choi, Byong-Jeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.97-107
    • /
    • 2020
  • In this study, finite element analysis was carried out through the finite element analysis program (ANSYS) to investigate the fire resistance of composite columns in fire. Transient heat transfer analysis and static structural analysis were performed according to ASTM E 119 heating curve and axial force ratio 0.7, 0.6, 0.5 by applying stress-strain curves according to temperature, and loading heating experiments were carried out under the same conditions. In addition, the nominal compressive strength of the composite column according to the heating time according to the standard(Eurocode 4) was calculated and expressed as the axial force ratio and compared with the analytical and experimental values. Through the analysis, As a result of finite element analysis, the fire resistance time was 180 minutes and similar value to the experimental value was obtained, whereas the fire resistance time 150 minutes and 60 minutes were derived from the axial force ratios 0.6 and 0.7. In addition, it was confirmed that the fire resistance time according to the axial force ratio calculated according to the reference equation (Eurocode 4) was lower than the actual experimental value. However, it was confirmed that the standard(Eurocode 4) was higher than the experimental value at the axial force ratio of 0.7. Accordingly, it is possible to confirm the fire resistance characteristics(time-axial force ratio relationship) of the SRC column at high axial force, and to use the experimental and anaylsis data of the SRC column as the data for verification based on Eurocode.

A Study on Factors Influencing Fire Service Power - An Analysis of the Fundamental Variable for Fire Service Budget - (소방력에 영향을 미치는 요인에 관한 연구 - 소방예산의 기본변수분석을 중심으로 -)

  • Kim, Jin-Dong
    • Fire Science and Engineering
    • /
    • v.22 no.2
    • /
    • pp.9-19
    • /
    • 2008
  • Recently the systematic change in the fire and disaster prevention administration, which was less studied than other administrative systems, has been in progress. In particular, the fire service demands are increasing and forms are diversified. The first thing you must do is to make up the fire service power according to the fire service demands. Such an allocation results in social welfare satisfaction. The purpose of this study is to investigate the determinants of fire service force. And this study investigates that fire service demand is affected by socioeconomic factor. To do this, this study reviews fire service force, the fire service demand, socioeconomic factor and financial factor. And this study sets up four hypotheses based on the theoretical backgrounds and the past research. The statistical method used for the verification of hypotheses are multiple regression analysis and structural equitation analysis. The analysis showed that fire service demand and financial factor were positive significant variable for fire service power. But socioeconomic factor was a negative significant variable. Also the analysis showed that social factor was a positive significant variable and economic factor was a negative significant variable for fire service demand.