• Title/Summary/Keyword: Force-feedback

Search Result 552, Processing Time 0.032 seconds

Haptic Friction Display of a Hybrid Active/Passive Force Feedback Interface

  • An, Jin-Ung;Kwon, Dong-Soo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1673-1678
    • /
    • 2005
  • This paper addresses both theoretical and experimental studies of the stability of haptic interfaces during the simulation of virtual Coulomb friction. The first objective of this paper is to present an analysis of how friction affects stability in terms of the describing function method and the absolute stability theory. Two different feedback methods are introduced and are used to evaluate the analysis: an active force feedback, using a motor, and a passive force feedback, using controllable brake. The second objective of this paper is to present a comparison of the theoretical and experimental results. The results indicate that the sustained oscillations due to the limit cycle occur when simulating friction with an active force feedback. In contrast, a passive force feedback can simulate virtual friction without the occurrence of instability. In conclusion, a hybrid active/passive force feedback is proposed to simulate a highly realistic friction display.

  • PDF

Development of Force Feedback Seat for PC-Game (Force Feedback을 이용한 PC Game용 체감시트 개발)

  • Choi Sam-Ha;Kim Kyung-Sik
    • Journal of Game and Entertainment
    • /
    • v.1 no.1
    • /
    • pp.15-22
    • /
    • 2005
  • Among recent technologies that are applied to game development, virtual reality part is getting much attention for its technological effectiveness in transmitting game processing circumstances in variety that are happening in game world very realistically. In this study we analyze interface for game that is based on a action realization technology and force-feedback technology among technologies for developing virtual reality, in other words, technical analogy on game controller and the positive and negative sides of game controller for each platform. Based on that, more ordinary and effective way to deliver the functions to users in PC game field where application of force-feedback technology is least satisfied. And, Force-Feedback seat has been developed to satisfy the users' needs by using vibration.

  • PDF

Teleoperation Control of Omni-directional Mobile Robot with Force Feedback (힘 반향 기법을 이용한 전방향 이동 로봇의 원격 제어)

  • Lee, Jeong-Hyeong;Lee, Hyung-Jik;Jung, Seul
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.243-245
    • /
    • 2007
  • This paper presents the implementation of teleoperation control of an omni-direction mobile robot. The master joystick robot has two degrees of freedom to control the movement of the slave mobile robot in the Cartesian space. In addition, the whole teleoperated control system is closed by the force feedback. The operator can feel the contact force as the slave robot makes contact with the environment. Experimental results show that the teleooerated control with force feedback has been successfully implemented.

  • PDF

Cellular Force Sensing for Force Feedback-Based Biological Cell Injection (힘 피드백 기반의 세포조작을 위한 세포막 침습력 측정)

  • Kim, Deok-Ho;Yun, Seok;Kang, Hyun-Jae;Kim, Byung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.12
    • /
    • pp.2079-2084
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular force sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

Cellular Force Measurement for Force Feedback-Based Biomanipulation (힘반향 기반의 바이오매니퓰레이션을 위한 세포 조작력 측정)

  • Kim, Duk-Ho;Kim, Byung-Kyu;Yoon, Seok;Kang, Hyun-Jae
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.237-240
    • /
    • 2003
  • In biological cell manipulation, manual thrust or penetration of an injection pipette into an embryo cell is currently performed by a skilled operator, relying on visual feedback information only. Accurately measuring cellular forces is a requirement for minimally invasive cell injections. Moreover, the cellular farce sensing is essential in investigating the biophysical properties for cell injury and membrane modeling studies. This paper presents cellular force measurements for the force feedback-based biomanipulation. Cellular force measurement system using piezoelectric polymer sensor is implemented to measure the penetration force of a zebrafish egg cell. First, measurement system setup and calibration are described. Second, the force feedback-based biomanipulation is experimentally carried out. Experimental results show that it successfully supplies real-time cellular force feedback to the operator at several tens of uN and thus plays a main role in improving the reliability of biological cell injection tasks.

  • PDF

Human sensory feedback research in the armstrong laboratory

  • Weisenberger, Janet M.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.83-100
    • /
    • 1997
  • The Human Sensory Feedback Laboratory, park of the Armstrong Laboratory at Wright-Patterson Air Force Base, Ohio, is involved in the development and evaluation of systems that provide sensory feedback to the human operator in telerobotic and virtual environment applications. Specific projects underway in the laboratory are primarily concerned with the information provided by force and vibrotactile feedback to the operator in dextrous manipulation tasks. Four specific research projects are described in the present report. These include : 1) experiments evaluating a 30-element fingertip display, which employs a titanium-nickel shape memory alloy actuator design to provide vibrotactile feedback about object shape and surface texture ; 2) of a fingertip force-feedback display for 3-dimensional information about object shape and suface texture ; 3) use of a force- feedback joystic to provide "force tunnel" information in pilot pursuit tracking tasks ; and 4) evaluations of a 7 degree-of-freedom exoskeleton used to control a robotic arm. Both basic and applied research questions are discussed.

  • PDF

Sensory Evaluation of Friction and Viscosity Rendering with a Wearable 4 Degrees of Freedom Force Feedback Device Composed of Pneumatic Artificial Muscles and Magnetorheological Fluid Clutches

  • Okui, Manabu;Tanaka, Toshinari;Onozuka, Yuki;Nakamura, Taro
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.77-83
    • /
    • 2021
  • With the progress in virtual reality technology, various virtual objects can be displayed using head-mounted displays (HMD). However, force feedback sensations such as pushing against a virtual object are not possible with an HMD only. Focusing on force feedback, desktop-type devices are generally used, but the user cannot move in a virtual space because such devices are fixed on a desk. With a wearable force feedback device, users can move around while experiencing force feedback. Therefore, the authors have developed a wearable force feedback device using a magnetorheological fluid clutch and pneumatic rubber artificial muscle, aiming at presenting the elasticity, friction, and viscosity of an object. To date, we have developed a wearable four-degree-of-freedom (4-DOF) force feedback device and have quantitatively evaluated that it can present commanded elastic, frictional, and viscous forces to the end effector. However, sensory evaluation with a human has not been performed. In this paper, therefore, we conduct a sensory evaluation of the proposed method. In the experiment, frictional and viscous forces are rendered in a virtual space using a 4-DOF force feedback device. Subjects are asked to answer questions on a 1- to 7-point scale, from 1 (not at all) to 4 (neither) to 7 (strongly). The Wilcoxon signed rank test was used for all data, and answer 4 (neither) was used as compared standard data. The experimental results confirmed that the user could feel the presence or absence of viscous and frictional forces. However, the magnitude of those forces was not sensed correctly.

The Effect of Force Feedback on Video Gamers' Performance (포스 피드백이 비디오 게이머들의 게임결과에 미치는 영향)

  • Jeong, Wooseob
    • Journal of the Korean BIBLIA Society for library and Information Science
    • /
    • v.24 no.4
    • /
    • pp.91-98
    • /
    • 2013
  • The purpose of this study is to examine the effect of force feedback on video gamers' performance with two different types of game controllers, and to verify users' consistency on their perceptions of force feedback effect and their actual performances in video games. 42 qualified players' records on a driving video game were analyzed in this study. This study shows 1) the force feedback effect in video games depends on the type of game controllers, 2) there is inconsistency between gamers' perception on the force feedback effect and their actual performances with the force feedback effect, and 3) emotional pleasure (fun factor) plays a big role in gamers' performances.

A study on the new method of force reflection control for the teleoperated mobile robot

  • Hong, Sun-Gi;Lee, Ju-Jang;Kim, Seungho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1523-1526
    • /
    • 1996
  • This paper presents a new method of force reflection in the teleoperated mobile robot control: artificial force feedback. Generally it is well known that force feedback from slave to master increases the reality with which the operator interacts with the environment. In the applications of the teleoperated mobile robot, however, such a force feedback control algorithm has rarely appeared in the literature because the contact force between the environment and the mobile robot is not available. In this paper, a method of artificially generating the feedback force for the teleoperated mobile robot is presented in order to improve the task performance. The computed artificial force feeds into the new designed joystick so as to increase the telepresence of the environment. Through simulations, we confirm the validity and effectiveness of our algorithm.

  • PDF

Tactile feedback device using repulsive force of the magnets for teleoperation (자석의 반발력을 이용한 원격조종용 촉각궤환장치)

  • Ahn, Ihn-Seok;Moon, Yong-Mo;Lee, Jung-Hun;Park, Jong-Oh;Lee, Jong-Won;Woo, Kwang-Bang
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.1
    • /
    • pp.67-76
    • /
    • 1997
  • In this paper we developed a tactile feedback device using repulsive force of magnets. The force of the tactile feedback device was derived from the Maxwell's stress method by using the concept of magnetic charge. Magnetic repulsive force is linear function with respect to current and nonlinear to displacement. Experimental data shows these characteristics. To compensate the fact that the presented tactile feedback device can not be controlled by close loop control, we developed a simulation model which predicts output displacement and force by using Runge-Kutta method. And, this paper evaluated the presented tactile feedback device and compared it with commercial tactile feedback devices.

  • PDF