• Title/Summary/Keyword: Forced circulation

Search Result 89, Processing Time 0.031 seconds

Numerical analysis of the temperature distribution of the EM pump for the sodium thermo-hydraulic test loop of the GenIV PGSFR

  • Kwak, Jaesik;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.53 no.5
    • /
    • pp.1429-1435
    • /
    • 2021
  • The temperature distribution of an electromagnetic pump was analyzed with a flow rate of 1380 L/min and a pressure of 4 bar designed for the sodium thermo-hydraulic test in the Sodium Test Loop for Safety Simulation and Assessment-Phase 1 (STELLA-1). The electromagnetic pump was used for the circulation of the liquid sodium coolant in the Intermediate Heat Transport System (IHTS) of the Prototype Gen-IV Sodium-cooled Fast Reactor (PGSFR) with an electric power of 150 MWe. The temperature distribution of the components of the electromagnetic pump was numerically analyzed to prevent functional degradation in the high temperature environment during pump operation. The heat transfer was numerically calculated using ANSYS Fluent for prediction of the temperature distribution in the excited coils, the electromagnet core, and the liquid sodium flow channel of the electromagnetic pump. The temperature distribution of operating electromagnetic pump was compared with cooling of natural and forced air circulation. The temperature in the coil, the core and the flow gap in the two conditions, natural circulation and forced circulation, were compared. The electromagnetic pump with cooling of forced circulation had better efficiency than natural circulation even considering consumption of the input power for the air blower. Accordingly, this study judged that forced cooling is good for both maintenance and efficiency of the electromagnetic pump.

Effect of Forced-air circulation of ambient Fruit on the Occurrence Fermented-fruit and Fruit Quality of Oriental Melon(Cucumis melo L. var. makuwa Mak.) (과실부위 송풍이 참외의 품질 및 발효과 발생에 미치는 영향)

  • 연일권;최성국;최부술;신용습
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.99-107
    • /
    • 1999
  • The experiment was conducted to investigate the relationship between $Ca^{2+}$ uptake and development of fermented fruit through the forced-air circulation of ambient fruit. Air circulation of ambient fruits were adjusted with 0.3m/sec wind velocity for three hours a day from 10:00 to 13:00. Treatments consisted of 0, 10 day, 20 day, 30 day of forced air circulation of ambient fruit. Although the results varied depend on the duration forced air circulation, in general, treated fruit increased fruit weight, flesh thickness, fruit hardness, soluble solids, and chromaticity, and decreased the number of fermented-fruit. $Ca^{2+}$ content in fruit.

  • PDF

Research of Flow Electrification Phenomena of the used Environment-Friendly Vegetable Insulating Oils (친환경 식물성절연유의 유동대전현상 연구)

  • Choi, Sun-Ho;Huh, Chang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.4
    • /
    • pp.580-584
    • /
    • 2012
  • The insulating oils perform a cooling and insulation action in electric power transformer. The mineral oil has immanent fire dangerousness and environmental contamination problem. Vegetable insulating oil has higher ignition point, flash point and more excellent biodegradability than conventional mineral oil. In a real oil-filled transformers, some of the power is dissipated in the form of heat. And transformer require the heat to be removed from the winding and insulator by forced convection of the insulating oil. The flow electrification occurs when insulating oil was forced to be circulated. In this paper, influence of temperature, velocity of flow, and insulating pipe and diameter on streaming electrification of vegetable insulating oil was investigated using forced circulation apparatus. Temperature effects were most significant, and it showed a peak in the temperature $30^{\circ}C$ to $35^{\circ}C$ at insulating and copper pipe. The change of flow electrification according to area variety could be checked by change of diameter.

Experimental and numerical investigations on effect of reverse flow on transient from forced circulation to natural circulation

  • Li, Mingrui;Chen, Wenzhen;Hao, Jianli;Li, Weitong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.9
    • /
    • pp.1955-1962
    • /
    • 2020
  • In a sudden shutdown of primary pump or coolant loss accident in a marine nuclear power plant, the primary flow decreases rapidly in a transition process from forced circulation (FC) to natural circulation (NC), and the lower flow enters the steam generator (SG) causing reverse flow in the U-tube. This can significantly compromise the safety of nuclear power plants. Based on the marine natural circulation steam generator (NCSG), an experimental loop is constructed to study the characteristics of reverse flow under middle-temperature and middle-pressure conditions. The transition from FC to NC is simulated experimentally, and the characteristics of SG reverse flow are studied. On this basis, the experimental loop is numerically modeled using RELAP5/MOD3.3 code for system analysis, and the accuracy of the model is verified according to the experimental data. The influence of the flow variation rate on the reverse flow phenomenon and flow distribution is investigated. The experimental and numerical results show that in comparison with the case of adjusting the mass flow discontinuously, the number of reverse flow tubes increases significantly during the transition from FC to NC, and the reverse flow has a more severe impact on the operating characteristics of the SG. With the increase of flow variation rate, the reverse flow is less likely to occur. The mass flow in the reverse flow U-tubes increases at first and then decreases. When the system is approximately stable, the reverse flow is slightly lower than obverse flow in the same U-tube, while the flow in the obverse flow U-tube increases.

The simulation study on natural circulation operating characteristics of FNPP in inclined condition

  • Li, Ren;Xia, Genglei;Peng, Minjun;Sun, Lin
    • Nuclear Engineering and Technology
    • /
    • v.51 no.7
    • /
    • pp.1738-1748
    • /
    • 2019
  • Previous research has shown that the inclined condition has an impact on the natural circulation (natural circulation) mode operation of Floating Nuclear Power Plant (FNPP) mounted on the movable marine platform. Due to its compact structure, small volume, strong maneuverability, the Integral Pressurized Water Reactor (IPWR) is adopted as marine reactor in general. The OTSGs of IPWR are symmetrically arranged in the annular region between the reactor vessel and core support barrel in this paper. Therefore, many parallel natural circulation loops are built between the core and the OTSGs primary side when the main pump is stopped. and the inclined condition would lead to discrepancies of the natural circulation drive head among the OTSGs in different locations. In addition, the flow rate and temperature nonuniform distribution of the core caused by inclined condition are coupled with the thermal hydraulics parameters maldistribution caused by OTSG group operating mode on low power operation. By means of the RELAP5 codes were modified by adding module calculating the effect of inclined, heaving and rolling condition, the simulation model of IPWR in inclined condition was built. Using the models developed, the influences on natural circulation operation by inclined angle and OTSG position, the transitions between forced circulation (forced circulation) and natural circulation and the effect on natural circulation operation by different OTSG grouping situations in inclined condition were analyzed. It was observed that a larger inclined angle results the temperature of the core outlet is too high and the OTSG superheat steam is insufficient in natural circulation mode operation. In general, the inclined angle is smaller unless the hull is destroyed seriously or the platform overturn in the ocean. In consequence, the results indicated that the IPWR in the movable marine platform in natural circulation mode operation is safety. Selecting an appropriate average temperature setting value or operating the uplifted OTSG group individually is able to reduce the influence on natural circulation flow of IPWR by inclined condition.

Analysis on the Thermal Performance of Flat-plate Solar Collector for Greenhouse Heating(I) (온실 난방을 위한 평판형 태양집열기의 열적성능 분석)

  • Suh, Won-Myung;Yoon, Yong-Cheol;Lee, Seung-Hwan;Lee, Suk-Gun
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.6
    • /
    • pp.46-56
    • /
    • 1998
  • This study was performed to investigate thermal performances of two different types of flat-plate solar collector systems; natural circulation system and forced circulation system. Conclusions obtained from this study are summarized as follows; 1) In the natural circulation system, the total heat amounts retrieved by starting recovery soon after sunrise were ranged from 10.28 to 17.20MJ/m$^2$, while the total heat amounts retrieved by starting recovery after sunset were ranged from 5.31 to 10.77MJ/m$^2$. 2) The collector efficiency in natural circulation system were ranged from 51.1% to 54.1% when the collected heat was retrieved after sunrise and were 65.8~78.0% when the collected heat was retrieved soon after sunset. 3) According to the regression analysis between fluid flow rates and fluid temperature difference at inlet and outlet of collector pipe, there was high regressive corelations with regression coefficient, r, of 0.982. 4) The collector efficiencies estimated for forced circulation system were 73.1~88.6%, and 78.4~94.8%, and 64.2%~74.5%, respectively when fluid circulation rates were 4.2 l/min, and 7.0 l/min, respectively.

  • PDF

Critical Heat Flux under Forced and Natural Circulations of Water at Low-Pressure, Low-Flow Conditions

  • Kim, Yun-Il;Baek, Won-Pil;Chang, Soon-Heung
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.10a
    • /
    • pp.315-320
    • /
    • 1995
  • The CHF phenomenon has been investigated for water flow under forced and natural circulation modes with vertical round tubes at low pressure and low flow condition. Experiments have been performed by using three different test sections for mass fluxes below 400 kg/㎡s under near atmospheric pressure. The experimental data for forced and natural circulation are compared with each other. To predict the flow rate at the two-phase region our test condition has been analyzed by RELAP5/MOD3 because the local two-phase condition inside the stainless steel tube cannot be directly measured. To predict the CHF with accuracy we have to consider the parameters at the single-phase region as well as the flow behavior at the two-phase region.

  • PDF

Effect of Air Circulation in Greenhouse on Development of Fermented Fruits in Oriental Melon (시설내 공기순환이 참외 발효과 발생에 미치는 영향)

  • 신용습;연일권;배수곤;최성국;최부술
    • Journal of Bio-Environment Control
    • /
    • v.10 no.1
    • /
    • pp.23-29
    • /
    • 2001
  • This experiment was conducted to investigate to investigate the effect of air circulation and forced ventilation of greenhouse on the development of fermented fruits in an oriental melon. An air circulation system and a forced ventilation system were operated during 09:30~17:00 at a 15 min. interval from Apr. 6, 5 days after fruit setting, to Jun. 29, everyday except rainy days. Wind velocities in the greenhouse were 0.06~0.08, 0.24~0.32, and 0.60~0.72m.s$^{-1}$ in the naturally ventilated (control), in the air circulated, and including leaf length and width, were observed between treatments. However, the amount of xylem exudate increased in the air circulated treatment as compared to the control. Percent of fermented fruits significantly decreased in the air circulated treatment as compared to the control. The forced ventilation treatment showed no significant difference in percent of fermented fruits as compared to the control or to the air circulated treatment.

  • PDF

A Numerical Study on the Automotive Torque Converter(Part I) - Hydraulic Design and Evaluation of Circulation Flow Rate - (자동차용 토크 컨버터의 수치해석적 연구(Part I) - 수력학적 설계와 순환유량의 평가 -)

  • 김홍식;박재인;주원구;조강래
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.28-36
    • /
    • 1998
  • In order to establish the hydraulic design process of the torque converter, pump, turbine and stator were designed by reverse design method including one dimensional analysis, angular momentum distribution and forced vortex design. And the significance of evaluation of the circulation flow rate in torus of the torque converter was verified by numerical calculation if the combined blade rows of pump and turbine. It was confirmed that the computational method using interrow mixing model by Park and Cho was reliable to predict the flow-field and performance of the torque converter.

  • PDF

A Numerical Study on the Circulation in Deukryang Bay -I. Tidal Circulation forced by $M_2$-tide- (득량만의 해수유동에 관한 수치실험 -1. $M_2$ 조에 의한 해수유동-)

  • JUNG Eun-Jin;HONG Chol-Hoon;LEE Byung-Gul;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.27 no.4
    • /
    • pp.397-403
    • /
    • 1994
  • Circulations in Deukryang Bay are investigated using a numerical shallow water model. In the flow fields observed at four stations, north-south velocity components are dominant. In the model, the circulation forced by $M_2$-tide basically corresponded well to the observations. The model shows the strong currents in the mouth and the eastern part in the bay with about 60 cm/s and 50 cm/s, respectively. The model also shows the eddies in the tidal residual currents. To investigate the mechanism of eddy formation some numerical experiments are carried out. The results show that inertial and topographic effects play an important role in the eddy formation.

  • PDF