• 제목/요약/키워드: Forecasting Water Demand

검색결과 54건 처리시간 0.027초

단기 물 수요예측 시뮬레이터 개발과 예측 알고리즘 성능평가 (Development of Water Demand Forecasting Simulator and Performance Evaluation)

  • 신강욱;김주환;양재린;홍성택
    • 상하수도학회지
    • /
    • 제25권4호
    • /
    • pp.581-589
    • /
    • 2011
  • Generally, treated water or raw water is transported into storage reservoirs which are receiving facilities of local governments from multi-regional water supply systems. A water supply control and operation center is operated not only to manage the water facilities more economically and efficiently but also to mitigate the shortage of water resources due to the increase in water consumption. To achieve the goal, important information such as the flow-rate in the systems, water levels of storage reservoirs or tanks, and pump-operation schedule should be considered based on the resonable water demand forecasting. However, it is difficult to acquire the pattern of water demand used in local government, since the operating information is not shared between multi-regional and local water systems. The pattern of water demand is irregular and unpredictable. Also, additional changes such as an abrupt accident and frequent changes of electric power rates could occur. Consequently, it is not easy to forecast accurate water demands. Therefore, it is necessary to introduce a short-term water demands forecasting and to develop an application of the forecasting models. In this study, the forecasting simulator for water demand is developed based on mathematical and neural network methods as linear and non-linear models to implement the optimal water demands forecasting. It is shown that MLP(Multi-Layered Perceptron) and ANFIS(Adaptive Neuro-Fuzzy Inference System) can be applied to obtain better forecasting results in multi-regional water supply systems with a large scale and local water supply systems with small or medium scale than conventional methods, respectively.

앙상블 모형을 이용한 단기 용수사용량 예측의 적용성 평가 (Evaluation of short-term water demand forecasting using ensemble model)

  • 소병진;권현한;구자용;나봉길;김병섭
    • 상하수도학회지
    • /
    • 제28권4호
    • /
    • pp.377-389
    • /
    • 2014
  • In recent years, Smart Water Grid (SWG) concept has globally emerged over the last decade and also gained significant recognition in South Korea. Especially, there has been growing interest in water demand forecast and this has led to various studies regarding energy saving and improvement of water supply reliability. In this regard, this study aims to develop a nonlinear ensemble model for hourly water demand forecasting which allow us to estimate uncertainties across different model classes. The concepts was demonstrated through application to observed from water plant (A) in the South Korea. Various statistics (e.g. the efficiency coefficient, the correlation coefficient, the root mean square error, and a maximum error rate) were evaluated to investigate model efficiency. The ensemble based model with an cross-validate prediction procedure showed better predictability for water demand forecasting at different temporal resolutions. In particular, the performance of the ensemble model on hourly water demand data showed promising results against other individual prediction schemes.

시스템 다이내믹스법을 이용한 서울특별시의 장기 물수요예측 (Forecasting the Long-term Water Demand Using System Dynamics in Seoul)

  • 김신걸;변신숙;김영상;구자용
    • 상하수도학회지
    • /
    • 제20권2호
    • /
    • pp.187-196
    • /
    • 2006
  • Forecasting the long-term water demand is important in the plan of water supply system because the location and capacity of water facilities are decided according to it. To forecast the long-term water demand, the existing method based on lpcd and population has been usually used. But, these days the trend among the variation of water demand has been disappeared, so expressing other variation of it is needed to forecast correct water demand. To accomplish it, we introduced the System Dynamics method to consider total connections of water demand factor. Firstly, the factors connected with water demand were divided into three sectors(water demand, industry, and population sectors), and the connections of factors were set with multiple regression model. And it was compared to existing method. The results are as followings. The correlation efficients are 0.330 in existing model and 0.960 in SD model and MAE are 3.96% in existing model and 1.68% in SD model. So, it is proved that SD model is superior to the existing model. To forecast the long-term water demand, scenarios were made with variations of employment condition, economic condition and consumer price indexes and forecasted water demands in 2012. After all scenarios were performed, the results showed that it was not needed to increase the water supply ability in Seoul.

SSA를 이용한 일 단위 물수요량 단기 예측에 관한 연구 (A Study of Short Term Forecasting of Daily Water Demand Using SSA)

  • 권현한;문영일
    • 상하수도학회지
    • /
    • 제18권6호
    • /
    • pp.758-769
    • /
    • 2004
  • The trends and seasonalities of most time series have a large variability. The result of the Singular Spectrum Analysis(SSA) processing is a decomposition of the time series into several components, which can often be identified as trends, seasonalities and other oscillatory series, or noise components. Generally, forecasting by the SSA method should be applied to time series governed (may be approximately) by linear recurrent formulae(LRF). This study examined forecasting ability of SSA-LRF model. These methods are applied to daily water demand data. These models indicate that most cases have good ability of forecasting to some extent by considering statistical and visual assessment, in particular forecasting validity shows good results during 15 days.

사회인구통계 및 상수도시설 특성을 고려한 소블록 단위 물 수요예측 연구 (Water demand forecasting at the DMA level considering sociodemographic and waterworks characteristics)

  • 진샘물;최두용;김경필;구자용
    • 상하수도학회지
    • /
    • 제37권6호
    • /
    • pp.363-373
    • /
    • 2023
  • Numerous studies have established a correlation between sociodemographic characteristics and water usage, identifying population as a primary independent variable in mid- to long-term demand forecasting. Recent dramatic sociodemographic changes, including urban concentration-rural depopulation, low birth rates-aging population, and the rise in single-person households, are expected to impact water demand and supply patterns. This underscores the necessity for operational and managerial changes in existing water supply systems. While sociodemographic characteristics are regularly surveyed, the conducted surveys use aggregate units that do not align with the actual system. Consequently, many water demand forecasts have been conducted at the administrative district level without adequately considering the water supply system. This study presents an upward water demand forecasting model that accurately reflects real water facilities and consumers. The model comprises three key steps. Firstly, Statistics Korea's SGIS (Statistical Geological Information System) data was reorganized at the DMA level. Secondly, DMAs were classified using the SOM (Self-Organizing Map) algorithm to consider differences in water facilities and consumer characteristics. Lastly, water demand forecasting employed the PCR (Principal Component Regression) method to address multicollinearity and overfitting issues. The performance evaluation of this model was conducted for DMAs classified as rural areas due to the insufficient number of DMAs. The estimation results indicate that the correlation coefficients exceeded 0.9, and the MAPE remained within approximately 10% for the test dataset. This method is expected to be useful for reorganization plans, such as the expansion and contraction of existing facilities.

Urban Water Demand Forecasting Using Artificial Neural Network Model: Case Study of Daegu City

  • Jia, Peng;An, Shanfu;Chen, Guoxin;Jeon, Ji-Young;Jee, Hong-Kee
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2007년도 학술발표회 논문집
    • /
    • pp.1910-1914
    • /
    • 2007
  • This paper employs a relatively new technique of Artificial Neural Network (ANN) to forecast water demand of Daegu city. The ANN model used in this study is a single hidden layer hierarchy model. About seventeen sets of historical water demand records and the values of their socioeconomic impact factors are used to train the model. Also other regression and time serious models are investigated for comparison purpose. The results present the ANN model can better perform the issue of urban water demand forecasting, and obtain the correlation coefficient of $R^2$ with a value of 0.987 and the relative difference less than 4.4% for this study.

  • PDF

Wavelet Transform 방법과 SVM 모형을 활용한 상수도 수요량 예측기법 개발 (A Development of Water Demand Forecasting Model Based on Wavelet Transform and Support Vector Machine)

  • 권현한;김민지;김운기
    • 한국수자원학회논문집
    • /
    • 제45권11호
    • /
    • pp.1187-1199
    • /
    • 2012
  • 본 연구에서는 Wavelet Transform과 Support Vector Machine (SVM)을 결합한 Hybrid 상수도 수요량 예측 모형을 개발하였다. Wavelet Transform 방법을 활용하여 다양한 스케일이 존재하는 상수도 수요량 시계열을 분해하여 단순한 형태의 시계열로 변환하는데 이용하였으며, 비선형 예측모형인 SVM은 이들 단순화된 시계열을 예측하는데 활용하여 예측성능을 극대화시키는 방안을 수립하였다. 본 연구에서는 상수도 수요량 자료에서 내재되어 있는 주기의 특성과 비선형 예측모형의 장점을 서로 연계한 해석이 가능하였으며 시각적인 검토 및 모든 통계지표에서 개선된 예측결과를 확인할 수 있었다. 특히, 기존 ARIMA 모형 계열에서 나타나는 자기예측문제를 상당부분 개선한 결과를 보여줌으로서 실질적인 수요량 예측모형으로서 활용이 가능할 것으로 판단된다.

데이터 마이닝과 칼만필터링에 기반한 단기 물 수요예측 알고리즘 (Short-term Water Demand Forecasting Algorithm Based on Kalman Filtering with Data Mining)

  • 최기선;신강욱;임상희;전명근
    • 제어로봇시스템학회논문지
    • /
    • 제15권10호
    • /
    • pp.1056-1061
    • /
    • 2009
  • This paper proposes a short-term water demand forecasting algorithm based on kalman filtering with data mining for sustainable water supply and effective energy saving. The proposed algorithm utilizes a mining method of water supply data and a decision tree method with special days like Chuseok. And the parameters of MLAR (Multi Linear Auto Regression) model are estimated by Kalman filtering algorithm. Thus, we can achieve the practicality of the proposed forecasting algorithm through the good results applied to actual operation data.

유역 유출 예측 시스템 개발 (Development of Rainfall-Runoff forecasting System)

  • 황만하;맹승진;고익환;류소라
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2004년도 학술발표회
    • /
    • pp.709-712
    • /
    • 2004
  • The development of a basin-wide runoff analysis model is to analysis monthly and daily hydrologic runoff components including surface runoff, subsurface runoff, return flow, etc. at key operation station in the targeted basin. h short-term water demand forecasting technology will be developed fatting into account the patterns of municipal, industrial and agricultural water uses. For the development and utilization of runoff analysis model, relevant basin information including historical precipitation and river water stage data, geophysical basin characteristics, and water intake and consumptions needs to be collected and stored into the hydrologic database of Integrated Real-time Water Information System. The well-known SSARR model was selected for the basis of continuous daily runoff model for forecasting short and long-term natural flows.

  • PDF