• Title/Summary/Keyword: Forest gap

Search Result 144, Processing Time 0.031 seconds

The Pattern of Natural Regeneration by Canopy Gap Size in the Mixed Broadleaved-Korean Pine Forest of Xiaoxing'an Mountains, China

  • Jin, Guangze;Tian, Yueying;Zhao, Fengxia;Kim, Ji Hong
    • Journal of Korean Society of Forest Science
    • /
    • v.96 no.2
    • /
    • pp.227-234
    • /
    • 2007
  • The forest canopy gap has been well known as a substantial process of forest cyclic regeneration and important role in stand structure, dynamics, and biodiversity of the forest ecosystem. Based on 3,600 $5m{\times}5m$ square grids in a 9ha permanent experimental plot, the study was conducted to evaluate the regeneration pattern of woody species by developmental stage {seedlings (<1 m of height), saplingI (>1 m of height, <2 cm of DBH), and saplingII (2 cm$<200m^2$), $201-400m^2$, $400-600m^2$, $601-800m^2$, and $>800m^2$) in the mixed broadleaved-Korean pine forest. The results indicated that the regenerating trees of Populus ussuriensis occurred only in the canopy gap area, considered to be a typical gap-dependent species. The regeneration of Ulmus japonica, Ulmus laciniata, and Maackia amurensis could be generally satisfied with the gap size of $201-600m^2$, Betula costata and Prunus padus with gap size of $401-800m^2$, Picea koraiensis with gap size of $201-800m^2$, Fraxinus mandshurica and Syringa reticulata var. mandshurica with smaller than $800m^2$, respectively. Acer ukurunduense and Acer tegmentosum were likely to have no problem with the gap size to make gap regeneration. Acer mono and Tilia amurensis looked more capable of regenerating in the closed canopy disregarding the upper crown condition. The regeneration of Pinus koraiensis and Abies nephrolepis had no trouble under the canopy condition in less than $800m^2$of gap size. The density of regenerating shrubs was rather high, especially under the closed canopy, considered to be associated with great amount of regeneration production in such shade tolerant species as Lonicera maackii, Corylus mandshurica, Euonymus pauciflorus, and Philadelphus schrenkii under the closed canopy. Pearson correlation coefficient was computed to compare the similarity among non-gap area and five gap size classes by developmental stages for trees and shrubs. The similarity coefficients among closed canopy and the gap size classes were mostly significantly correlated to each other with a few exceptions.

Simulation of Forest Succession in Kwangnung Experimental Forest with Gap Model (Gap 모델을 이용한 광릉삼림군락의 천이에 대한 모의 실험)

  • Han, You-Young;Park, Seung-Tai;Kim, Joon-Ho;Lee, Chang-Seok
    • The Korean Journal of Ecology
    • /
    • v.19 no.6
    • /
    • pp.499-506
    • /
    • 1996
  • Forest stand development in Kwangnung Experimental Forest, Korea, was simulated with a forest succession gap model of the JABOWA/FORET type, in order to predict climax species and characterime the trend of community structure along the succession. The model runs for a period or 1, 000 yr and is based on the averaged successional characteristics of 50 forest plote with an individual size or 1/12 ha gap consisted of the 15 major tree species. The total bimass and leafarea index have arrived at a steady state since about 200 yr and these values are smaller than that or field survey. Carpinus cordata, C. laxiflora, Quercus mongolica and Q. serrata were epected to be climax species that represent about 86% or total biomass in later stage and these results coincided with the previous succession studies from field survey in the area.

  • PDF

Random Forest Model for Silicon-to-SPICE Gap and FinFET Design Attribute Identification

  • Won, Hyosig;Shimazu, Katsuhiro
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.5
    • /
    • pp.358-365
    • /
    • 2016
  • We propose a novel application of random forest, a machine learning-based general classification algorithm, to analyze the influence of design attributes on the silicon-to-SPICE (S2S) gap. To improve modeling accuracy, we introduce magnification of learning data as well as randomization for the counting of design attributes to be used for each tree in the forest. From the automatically generated decision trees, we can extract the so-called importance and impact indices, which identify the most significant design attributes determining the S2S gap. We apply the proposed method to actual silicon data, and observe that the identified design attributes show a clear trend in the S2S gap. We finally unveil 10nm key fin-shaped field effect transistor (FinFET) structures that result in a large S2S gap using the measurement data from 10nm test vehicles specialized for model-hardware correlation.

Effect of Gaps on Species Diversity in the Naturally Regenerated Mixed Broadleaved-Korean Pine Forest of the Xiaoxing'an Mountains, China

  • Jin, Guangze;Liu, Yanyan;Liu, Shuang;Kim, Ji-Hong
    • Journal of Ecology and Environment
    • /
    • v.30 no.4
    • /
    • pp.325-330
    • /
    • 2007
  • Recognizing the ecological importance of forest gap formation for forest community structure, we examined the differences in species diversity between forest gaps and closed canopy areas for trees and shrubs in three developmental stages (seedling, sapling I, and sapling II) in a typical mixed broadleaved-Korean pine forest. We randomly placed 100 sample plots ($2{\times}2m$ for seedling and sapling I, and $5{\times}5m$ for sapling II) in forest gap and closed canopy areas of a 9 ha permanent sample plot for vegetation surveys of plants of each developmental stage in each habitat type. Even though the formation of forest gaps encouraged the occurrence of gap-dependent species and increased overall species diversity, there were no significant differences in species richness among the three developmental stages for both tree and shrub species (p>0.05). Comparing the two types of sites, statistical tests revealed no difference in species richness for trees, but highly significant differences (p<0.01) between forest types for shrubs for seedlings and sapling I, but not sapling II. Analysis of variance test indicated that there were no significant differences in species diversity among the three developmental stages of tree species (p>0.05) for both Simpson and Shannon indices. The variance for shrub seedlings was significantly different between forest gaps and closed canopy areas, but not for sapling I and sapling II. The analysis showed that the species diversity in forest gaps was significantly different from that of closed canopy areas for seedling and sapling I (p<0.01), but not for sapling II (p>0.05).

Regeneration Process after Disturbance of the Pinus densiflora Forest in Korea (한국 소나무림에서의 교란 후 재생과정)

  • Lee, Chang-Seok
    • The Korean Journal of Ecology
    • /
    • v.18 no.1
    • /
    • pp.189-201
    • /
    • 1995
  • In order to clarify regeneration processes and mechanisms of the disturbed Pinus densiflora forest, responses of Pinus densiflora to gap formed by disturbance were analysed by growth of saplings and mature and growth equations were obtained from branch growth of mature trees and height growth of saplings, and age distribution of saplings and young trees recruited within gap was analysed in relation to gap age. Height growth of saplings within gaps was accelerated after gap formation. Such abrupt increases of growth of saplings after the gap formation might be resulted in the difference of growth of saplings between gap and non-gap areas. In fact, height and diameter of saplings in the central part of gap were larger than those of saplings in marginal parts of gap and non-gap area. However, density of saplings was not different in both parts. In addition, growth of annual rings of mature trees bordering on gap also increased after gap formation. Branch growth of mature trees bodering on gap was 6.3 - 6.5 cm /year and the mean radius of gaps created by death of only one canopy tree was about 3 m. Therefore, for those gaps to be closed by branch growth it will take 46 years. Growth of saplings within gap showed exponential equation. Fifty years will be required for the saplings to enter the forest canopy by the exponential growth equation. Therefore, gap created by only one tree might be closed by branch growth of surrounding canopy trees in advance of being done by height growth of saplings. But gaps created by death of trees more than 2 will be closed by the growth of saplings. Among the regenerating saplings and young trees within gaps, individuals established in advance of gap formation were more than those established after the gap formation. From these results, it was assumed that the disturbed Pinus densiflora forests in these sites were regenerated by height growth of saplings recruited in advance of gap formation.

  • PDF

Crown Architecture of Pinus densiflora in Canopy Gap of Natural Forests at Mt. Joongwang in Kangwon-do (강원도(江原道) 중왕산(中旺山) 지역(地域) 소나무 천연림(天然林)내 숲틈 갱신(更新) 소나무의 수관(樹冠) Architecture)

  • Jin, Young Huan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.5
    • /
    • pp.543-551
    • /
    • 2000
  • This study was conducted to understand Pinus densiflora regeneration characteristics from canopy gaps due to disturbance in natural forests located at Mt. Joongwang in Kangwon-do. The line-transect method was adopted to analyze crown architecture of Pinus densiflora. The saplings of Pinus densiflora in the canopy gap showed high adaptation to growth environment at their early regeneration stage, and showed different characteristics in crown architecture. Variation of branching angle in the main branch of Pinus densiflora was small in canopy gap. Primary branch growth showed was high during 4~5 year-old period and slowly low after that period. Average 5 of primary branch were generated from stem in canopy. Average 4 of secondary branch were generated from primary branch in canopy gap. Primary branches generated from the stem were uniformly distributed at all cardinal directions. When canopy gap size is $100{\sim}120m^2$, secondary branches generated from primary branch had mostly high numbers between $S44^{\circ}E$ and $S90^{\circ}W$.

  • PDF

Growth Characteristics and Physiological Adaptation of Pinus densiflora Seedling in the Canopy Gap (소나무 묘목(苗木)의 Gap내 생장(生長) 및 생리적(生理的) 적응과정(適應過程))

  • Jin, Yonghuan;Lee, Don Koo
    • Journal of Korean Society of Forest Science
    • /
    • v.89 no.3
    • /
    • pp.452-460
    • /
    • 2000
  • This study was to investigate the growth characteristics, physiological adaptation of Pinus densiflora(Japanese Red Pine) seedlings at the artificial canopy gap in the Quercus acutissima plantation and to analyze its natural regeneration mechanism. Photosynthetic and transpiration rates were analyzed by different levels of photosynthetically active radiation and by seedling growth. Comparing to seedlings at the open area, those at the canopy gap showed more growth in height than in diameter with different levels of light quality and low light intensity, and the increase rate of dry weight was higher in the aboveground than in the underground, maintaining relatively high T/R rate. The C/F(the ratio of non-photosynthetic organs to photosynthetic organs in dry weight) of the aboveground at the canopy gap was higher than that at the open area by 0.1~0.2, while light saturation and light compensation points at the canopy gap were lower than that at the open area by $300{\mu}mol\;m^{-2}s^{-1}$ and 40%, respectively. The seedlings appeared to have shade tolerance to a certain extent at the young growth stage despite Pinus densiflora is typically classified shade-intolerant species. With light intensity lower than $400{\sim}450{\mu}mol\;m^{-2}s^{-1}$, photosynthetic rate and water use efficiency relatively increased by effective use of light energy.

  • PDF

Regeneration Process in Gap of Quercus mongolica Forest (신갈나무림의 Gap 내 재생과정)

  • 강상준;최철수
    • The Korean Journal of Ecology
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2000
  • The pattern of gap regeneration and vegetational changes were carried out in gaps with different ages and in an intact forest in a Quercus mongolica (mongolian oak) stand located at Munsubong of Mt. Worak. In the early stage of gap formation, Lespedeza maximowiczii, Fraxinus rhynchophylla, Tripterygium regelii, Quercus mongolica, and Stephanadra incisa were dominants in shrub layers. The numbers of shrubs with smaller diameters at ground surface were abundant in the early stage of gap formation. On the other hand, as gap age increased, the number of individuals of Quercus mongolica and Fraxinus rhynchophylla forming tall tree layer decreased. However the diameter at ground surface of Quercus mongolica and Fraxinus rhynchophylla increased. There were few young Quercus mongolica, but those over 130 years old appeared in mature Quercus mongolica stands. The last regeneration episode ended about 130 years ago and the new one started 40 years ago in this study site. Considering the presence of Quercus mongolica below 40 years old in gap and the absence of Quercus mongolica from 40 to 130 years old in closed stand, it is concluded that Quercus mongilica forest is maintained by discontinued regeneration.

  • PDF