• Title/Summary/Keyword: Fourier inversion

Search Result 81, Processing Time 0.032 seconds

Numerical Inversion Technique for the One and Two-Dimensional L2-Transform Using the Fourier Series and Its Application to Fractional Partial Differential Equations

  • Aghili, Arman;Ansari, Alireza
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.4
    • /
    • pp.383-395
    • /
    • 2012
  • In this paper, we use a computational algorithm for the inversion of the one and two-dimensional $\mathcal{L}_2$-transform based on the Bromwich's integral and the Fourier series. The new inversion formula can evaluate the inverse of the $\mathcal{L}_2$-transform with considerable accuracy over a wide range of values of the independent variable and can be devised for the functions which are not Laplace transformable and have damping motion in small interval near origin.

FOURIER INVERSION OF DISTRIBUTIONS ON THE SPHERE

  • A, Francisco Javier Gonzalez Vieli
    • Journal of the Korean Mathematical Society
    • /
    • v.41 no.4
    • /
    • pp.755-772
    • /
    • 2004
  • We show that the Fourier-Laplace series of a distribution on the sphere is uniformly Cesaro-summable to zero on a neighborhood of a point if and only if this point does not belong to the support of the distribution. Similar results on the ball and on the real projective space are also proved.

FOURIER'S TRANSFORM OF FRACTIONAL ORDER VIA MITTAG-LEFFLER FUNCTION AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1101-1121
    • /
    • 2008
  • One proposes an approach to fractional Fourier's transform, or Fourier's transform of fractional order, which applies to functions which are fractional differentiable but are not necessarily differentiable, in such a manner that they cannot be analyzed by using the so-called Caputo-Djrbashian fractional derivative. Firstly, as a preliminary, one defines fractional sine and cosine functions, therefore one obtains Fourier's series of fractional order. Then one defines the fractional Fourier's transform. The main properties of this fractal transformation are exhibited, the Parseval equation is obtained as well as the fractional Fourier inversion theorem. The prospect of application for this new tool is the spectral density analysis of signals, in signal processing, and the analysis of some partial differential equations of fractional order.

  • PDF

Korean Seismic Station Site Effect Estimation Using Generalized Inversion Technique (일반 역산 기법을 활용한 한국 지표 관측소 부지 효과 평가)

  • Jee, Hyun Woo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.111-118
    • /
    • 2023
  • The 2017 Pohang earthquake afflicted more significant economic losses than the 2016 Gyeongju earthquake, even if these earthquakes had a similar moment magnitude. This phenomenon could be due to local site conditions that amplify ground motions. Local site effects could be estimated from methods using the horizontal-to-vertical spectral ratio, standard spectral ratio, and the generalized inversion technique. Since the generalized inversion method could estimate the site effect effectively, this study modeled the site effects in the Korean peninsula using the generalized inversion technique and the Fourier amplitude spectrum of ground motions. To validate the method, the site effects estimated for seismic stations were tested using recorded ground motions, and a ground motion prediction equation was developed without considering site effects.

A NOTE ON PROLATE SPHEROIDAL WAVE FUNCTIONS AND PROLATE FUNCTION BASED NUMERICAL INVERSION METHODS

  • Kim, Eun-Joo;Lee, June-Yub
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.41-53
    • /
    • 2008
  • Polynomials are one of most important and widely used numerical tools in dealing with a smooth function on a bounded domain and trigonometric functions work for smooth periodic functions. However, they are not the best choice if a function has a bounded support in space and in frequency domain. The Prolate Spheroidal wave function (PSWF) of order zero has been known as a best candidate as a basis for band-limited functions. In this paper, we review some basic properties of PSWFs defined as eigenfunctions of bounded Fourier transformation. We also propose numerical inversion schemes based on PSWF and present some numerical examples to show their feasibilities as signal processing tools.

  • PDF

ERROR ESTIMATIES FOR A FREQUENCY-DOMAIN FINITE ELEMENT METHOD FOR PARABOLIC PROBLEMS WITH A NEUMANN BOUNDARY CONDITION

  • Lee, Jong-Woo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.345-362
    • /
    • 1998
  • We introduce and anlyze a naturally parallelizable frequency-domain method for parabolic problems with a Neumann boundary condition. After taking the Fourier transformation of given equations in the space-time domain into the space-frequency domain, we solve an indefinite, complex elliptic problem for each frequency. Fourier inversion will then recover the solution of the original problem in the space-time domain. Existence and uniqueness of a solution of the transformed problem corresponding to each frequency is established. Fourier invertibility of the solution in the frequency-domain is also examined. Error estimates for a finite element approximation to solutions fo transformed problems and full error estimates for solving the given problem using a discrete Fourier inverse transform are given.

  • PDF

A formal linearization of nonlinear systems based on the trigonometric fourier expansion

  • Takata, Hitoshi;Komatsu, Kazuo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.939-942
    • /
    • 1989
  • Most of systems are included nonlinear characteristics in practice. One might be faced with difficulties when problems of nonlinear systems are solved. In this paper we present a formal linearization method of nonlinear systems by using the trigonometric Fourier expansion on the state space considering easy inversion. An error bound, an application, and a compensation of this method are also investigated.

  • PDF

The Cauchy Representation of Integrable and Tempered Boehmians

  • Loonker, Deshna;Banerji, Pradeep Kumar
    • Kyungpook Mathematical Journal
    • /
    • v.47 no.4
    • /
    • pp.481-493
    • /
    • 2007
  • This paper deals with, by employing the relation between Cauchy representation and the Fourier transform and properties of the former in $L_1$-space, the investigation of the Cauchy representation of integrable Boehmians as a natural extension of tempered distributions, we have investigated Cauchy representation of tempered Boehmians. An inversion formula is also proved.

  • PDF

Moving load response in a rotating generalized thermoelastic medium

  • Ailawalia, Praveen;Narah, Naib Singh
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.81-94
    • /
    • 2010
  • The steady state response of a rotating generalized thermoelastic solid to a moving point load has been investigated. The transformed components of displacement, force stress and temperature distribution are obtained by using Fourier transformation. These components are then inverted and the results are obtained in the physical domain by applying a numerical inversion method. The numerical results are presented graphically for a particular model. A particular result is also deduced from the present investigation.

FRACTIONAL INTEGRAL ALONG HOMOGENEOUS CURVES IN THE HEISENBERG GROUP

  • KIM JOONIL
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.3
    • /
    • pp.499-516
    • /
    • 2005
  • We obtain the type set for the fractional integral operator along the curve $(t,t^2,\;{\alpha}t^3)$ on the three dimensional Heisenberg group when $\alpha\neq{\pm}1/6$. The proof is based on the Fourier inversion formula and the angular Littlewood-Paley decompositions in the Heisenberg group in [5].