• Title/Summary/Keyword: Fourier series approach

Search Result 53, Processing Time 0.025 seconds

A Goodness-Of-Fit Test for Adaptive Fourier Model in Time Series Data

  • Lee, Hoonja
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.3
    • /
    • pp.955-969
    • /
    • 2003
  • The classical Fourier analysis, which is the typical frequency domain approach, is used to detect periodic trends that are of the sinusoidal shape in time series data. In this article, using a sequence of periodic step functions, describes an adaptive Fourier series where the patterns may take general periodic shapes that include sinusoidal as a special case. The results, which extend both Fourier analysis and Walsh-Fourier analysis, are applies to investigate the shape of the periodic component. Through the real data, compare the goodness-of-fit of the model using two methods, the adaptive Fourier method which is proposed method in this paper and classical Fourier method.

FOURIER'S TRANSFORM OF FRACTIONAL ORDER VIA MITTAG-LEFFLER FUNCTION AND MODIFIED RIEMANN-LIOUVILLE DERIVATIVE

  • Jumarie, Guy
    • Journal of applied mathematics & informatics
    • /
    • v.26 no.5_6
    • /
    • pp.1101-1121
    • /
    • 2008
  • One proposes an approach to fractional Fourier's transform, or Fourier's transform of fractional order, which applies to functions which are fractional differentiable but are not necessarily differentiable, in such a manner that they cannot be analyzed by using the so-called Caputo-Djrbashian fractional derivative. Firstly, as a preliminary, one defines fractional sine and cosine functions, therefore one obtains Fourier's series of fractional order. Then one defines the fractional Fourier's transform. The main properties of this fractal transformation are exhibited, the Parseval equation is obtained as well as the fractional Fourier inversion theorem. The prospect of application for this new tool is the spectral density analysis of signals, in signal processing, and the analysis of some partial differential equations of fractional order.

  • PDF

The measurement of the amount of wear by using least squares approximation with Fourier series (푸리에 급수와 초소 자승법을 이용한 마멸량 측정)

  • 전종하;구영필;조용주
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.300-305
    • /
    • 1998
  • A method of calculating wear amount which is based on digitally measured surface profile was suggested. The original profile of worn out profile was estimated from its adjacent surface profile by using least squares curve fitting with Fourier series. The approximated curve was well fitted to original surface profile. With this approach, more accurate calculation of the wear amount will be possible.

  • PDF

Evaluation of Accuracy and Efficiency of Double Fourier Series (DFS) Spectral Dynamical Core (이중 푸리에 급수 분광법 역학코어의 정확도와 계산 효율성 평가)

  • Beom-Seok Kim;Myung-Seo Koo;Seok-Woo Son
    • Atmosphere
    • /
    • v.33 no.4
    • /
    • pp.387-398
    • /
    • 2023
  • The double Fourier series (DFS) spectral dynamical core is evaluated for the two idealized test cases in comparison with the spherical harmonics (SPH) spectral dynamical core. A new approach in calculating the meridional expansion coefficients of DFS, which was recently developed to alleviate a computational error but only applied to the 2D spherical shallow water equation, is also tested. In the 3D deformational tracer transport test, the difference is not conspicuous between SPH and DFS simulations, with a slight outperformance of the new DFS approach in terms of undershooting problem. In the baroclinic wave development test, the DFS-simulated wave pattern is quantitatively similar to the SPH-simulated one at high resolutions, but with a substantially lower computational cost. The new DFS approach does not offer a salient advantage compared to the original DFS while computation cost slightly increases. This result suggests that the current DFS spectral method can be a practical and alternative dynamical core for high-resolution global modeling.

Frequency-Dependent Line Capacitance and Conductance Calculations of On-Chip Interconnects on Silicon Substrate Using Fourier cosine Series Approach

  • Ymeri, H.;Nauwelaers, B.;Vandenberghe, S.;Maex, K.;De Roest, D.;Stucchi, M.
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.1 no.4
    • /
    • pp.209-215
    • /
    • 2001
  • In this paper a method for analysis and modelling of coplanar transmission interconnect lines that are placed on top of silicon-silicon oxide substrates is presented. The potential function is expressed by series expansions in terms of solutions of the Laplace equation for each homogeneous region of layered structure. The expansion coefficients of different series are related to each other and to potentials applied to the conductors via boundary conditions. In the plane of conductors, boundary conditions are satisfied at $N_d$ discrete points with $N_d$ being equal to the number of terms in the series expansions. The resulting system of inhomogeneous linear equations is solved by matrix inversion. No iterations are required. A discussion of the calculated line admittance parameters as functions of width of conductors, thickness of the layers, and frequency is given. The interconnect capacitance and conductance per unit length results are given and compared with those obtained using full wave solutions, and good agreement have been obtained in all the cases treated

  • PDF

Analysis of Fiber Nonlinearities by Perturbation Method

  • Lee Jong-Hyung;Han Dae-Hyun;Choi Byeong-Yoon
    • Journal of the Optical Society of Korea
    • /
    • v.9 no.1
    • /
    • pp.6-12
    • /
    • 2005
  • The perturbation approach is applied to solve the nonlinear Schrodinger equation, and its valid range has been determined by comparing with the results of the split-step Fourier method over a wide range of parameter values. With γ= 2㎞/sup -1/mW/sup -1/, the critical distance for the first order perturbation approach is estimated to be(equation omitted). The critical distance, Z/sub c/, is defined as the distance at which the normalized square deviation compared to the split-step Fourier method reaches 10/sup -3/. Including the second order perturbation will increase Z/sub c/ more than a factor of two, but the increased computation load makes the perturbation approach less attractive. In addition, it is shown mathematically that the perturbation approach is equivalent to the Volterra series approach, which can be used to design a nonlinear equalizer (or compensator). Finally, the perturbation approach is applied to obtain the sinusoidal response of the fiber, and its range of validity has been studied.

A study on torque shaping method for slewing and vibration suppression of flexible structures (유연우주비행체의 선회 및 진동억제를 위한 Torque Shaping 기법에 관한 연구)

  • 문종윤;석진영;김유단
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1087-1090
    • /
    • 1996
  • The objective of this paper is to present a new input torque shaping method for slewing and vibration suppression of flexible structure based on Fourier series expansion. Vibration energy of the structure with shaped control input is investigated with respect to the shaping parameter of the reference torque, maneuver time and the number of trigonometric functions to be included in the series. Analytic expressions of the performance indices and their derivatives are derived in the modal coordinates. Numerical results show the effectiveness of the proposed approach to design the open-loop control law that modifies the shape of input torque for simultaneous slewing and vibration suppression.

  • PDF

Transverse vibrations of simply supported orthotropic rectangular plates with rectangular and circular cut-outs carrying an elastically mounted concentrated mass

  • Avalos, D.R.;Larrondo, H.A.;Laura, P.A.A.
    • Structural Engineering and Mechanics
    • /
    • v.7 no.5
    • /
    • pp.503-512
    • /
    • 1999
  • Practicing a hole or an orifice through a plate or a slab constitutes a very frequent engineering situation due to operational reasons imposed on the structural system. From a designer's viewpoint it is important to know the effect of this modification of the mechanical system upon its elastodynamic characteristics. The present study deals with the determination of the lower natural frequencies of the structural element described in the title of the paper using a variational approach and expressing the displacement amplitude of the plate in terms of the double Fourier series which constitutes the classical, exact solution when the structure is simply supported at its four edges.

A Comparative Study on the Performance of Bayesian Partially Linear Models

  • Woo, Yoonsung;Choi, Taeryon;Kim, Wooseok
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.6
    • /
    • pp.885-898
    • /
    • 2012
  • In this paper, we consider Bayesian approaches to partially linear models, in which a regression function is represented by a semiparametric additive form of a parametric linear regression function and a nonparametric regression function. We make a comparative study on the performance of widely used Bayesian partially linear models in terms of empirical analysis. Specifically, we deal with three Bayesian methods to estimate the nonparametric regression function, one method using Fourier series representation, the other method based on Gaussian process regression approach, and the third method based on the smoothness of the function and differencing. We compare the numerical performance of three methods by the root mean squared error(RMSE). For empirical analysis, we consider synthetic data with simulation studies and real data application by fitting each of them with three Bayesian methods and comparing the RMSEs.

Generalizations of Ramanujan's Integral Associated with Infinite Fourier Cosine Transforms in Terms of Hypergeometric Functions and its Applications

  • Qureshi, Mohammad Idris;Dar, Showkat Ahmad
    • Kyungpook Mathematical Journal
    • /
    • v.60 no.4
    • /
    • pp.781-795
    • /
    • 2020
  • In this paper, we obtain an analytical solution for an unsolved definite integral RC (m, n) from a 1915 paper of Srinivasa Ramanujan. We obtain our solution using the hypergeometric approach and an infinite series decomposition identity. Also, we give some generalizations of Ramanujan's integral RC (m, n) defined in terms of the ordinary hypergeometric function 2F3 with suitable convergence conditions. Moreover as applications of our result we obtain nine new infinite summation formulas associated with the hypergeometric functions 0F1, 1F2 and 2F3.