• Title/Summary/Keyword: Fractional Laplacian

Search Result 20, Processing Time 0.026 seconds

FRACTIONAL HYBRID DIFFERENTIAL EQUATIONS WITH P-LAPLACIAN OPERATOR

  • CHOUKRI DERBAZI;ABDELKRIM SALIM;HADDA HAMMOUCHE;MOUFFAK BENCHOHRA
    • Journal of Applied and Pure Mathematics
    • /
    • v.6 no.1_2
    • /
    • pp.21-36
    • /
    • 2024
  • In this paper, we study the existence of solutions for hybrid fractional differential equations with p-Laplacian operator involving fractional Caputo derivative of arbitrary order. This work can be seen as an extension of earlier research conducted on hybrid differential equations. Notably, the extension encompasses both the fractional aspect and the inclusion of the p-Laplacian operator. We build our analysis on a hybrid fixed point theorem originally established by Dhage. In addition, an example is provided to demonstrate the effectiveness of the main results.

FRACTIONAL ORDER SOBOLEV SPACES FOR THE NEUMANN LAPLACIAN AND THE VECTOR LAPLACIAN

  • Kim, Seungil
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.3
    • /
    • pp.721-745
    • /
    • 2020
  • In this paper we study fractional Sobolev spaces characterized by a norm based on eigenfunction expansions. The goal of this paper is twofold. The first one is to define fractional Sobolev spaces of order -1 ≤ s ≤ 2 equipped with a norm defined in terms of Neumann eigenfunction expansions. Due to the zero Neumann trace of Neumann eigenfunctions on a boundary, fractional Sobolev spaces of order 3/2 ≤ s ≤ 2 characterized by the norm are the spaces of functions with zero Neumann trace on a boundary. The spaces equipped with the norm are useful for studying cross-sectional traces of solutions to the Helmholtz equation in waveguides with a homogeneous Neumann boundary condition. The second one is to define fractional Sobolev spaces of order -1 ≤ s ≤ 1 for vector-valued functions in a simply-connected, bounded and smooth domain in ℝ2. These spaces are defined by a norm based on series expansions in terms of eigenfunctions of the vector Laplacian with boundary conditions of zero tangential component or zero normal component. The spaces defined by the norm are important for analyzing cross-sectional traces of time-harmonic electromagnetic fields in perfectly conducting waveguides.

INFINITELY MANY SMALL ENERGY SOLUTIONS FOR EQUATIONS INVOLVING THE FRACTIONAL LAPLACIAN IN ℝN

  • Kim, Yun-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.55 no.5
    • /
    • pp.1269-1283
    • /
    • 2018
  • We are concerned with elliptic equations in ${\mathbb{R}}^N$, driven by a non-local integro-differential operator, which involves the fractional Laplacian. The main aim of this paper is to prove the existence of small solutions for our problem with negative energy in the sense that the sequence of solutions converges to 0 in the $L^{\infty}$-norm by employing the regularity type result on the $L^{\infty}$-boundedness of solutions and the modified functional method.

ON DISCONTINUOUS ELLIPTIC PROBLEMS INVOLVING THE FRACTIONAL p-LAPLACIAN IN ℝN

  • Kim, In Hyoun;Kim, Yun-Ho;Park, Kisoeb
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.6
    • /
    • pp.1869-1889
    • /
    • 2018
  • We are concerned with the following fractional p-Laplacian inclusion: $$(-{\Delta})^s_pu+V(x){\mid}u{\mid}^{p-2}u{\in}{\lambda}[{\underline{f}}(x,u(x)),\;{\bar{f}}(s,u(x))]$$ in ${\mathbb{R}}^N$, where $(-{\Delta})^s_p$ is the fractional p-Laplacian operator, 0 < s < 1 < p < $+{\infty}$, sp < N, and $f:{\mathbb{R}}^N{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is measurable with respect to each variable separately. We show that our problem with the discontinuous nonlinearity f admits at least one or two nontrivial weak solutions. In order to do this, the main tool is the Berkovits-Tienari degree theory for weakly upper semicontinuous set-valued operators. In addition, our main assertions continue to hold when $(-{\Delta})^s_pu$ is replaced by any non-local integro-differential operator.

EXISTENCE, MULTIPLICITY AND REGULARITY OF SOLUTIONS FOR THE FRACTIONAL p-LAPLACIAN EQUATION

  • Kim, Yun-Ho
    • Journal of the Korean Mathematical Society
    • /
    • v.57 no.6
    • /
    • pp.1451-1470
    • /
    • 2020
  • We are concerned with the following elliptic equations: $$\{(-{\Delta})^s_pu={\lambda}f(x,u)\;{\text{in {\Omega}}},\\u=0\;{\text{on {\mathbb{R}}^N{\backslash}{\Omega}},$$ where λ are real parameters, (-∆)sp is the fractional p-Laplacian operator, 0 < s < 1 < p < + ∞, sp < N, and f : Ω × ℝ → ℝ satisfies a Carathéodory condition. By applying abstract critical point results, we establish an estimate of the positive interval of the parameters λ for which our problem admits at least one or two nontrivial weak solutions when the nonlinearity f has the subcritical growth condition. In addition, under adequate conditions, we establish an apriori estimate in L(Ω) of any possible weak solution by applying the bootstrap argument.

EXISTENCE OF WEAK SOLUTIONS TO A CLASS OF SCHRÖDINGER TYPE EQUATIONS INVOLVING THE FRACTIONAL p-LAPLACIAN IN ℝN

  • Kim, Jae-Myoung;Kim, Yun-Ho;Lee, Jongrak
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.6
    • /
    • pp.1529-1560
    • /
    • 2019
  • We are concerned with the following elliptic equations: $$(-{\Delta})^s_pu+V (x){\mid}u{\mid}^{p-2}u={\lambda}g(x,u){\text{ in }}{\mathbb{R}}^N$$, where $(-{\Delta})_p^s$ is the fractional p-Laplacian operator with 0 < s < 1 < p < $+{\infty}$, sp < N, the potential function $V:{\mathbb{R}}^N{\rightarrow}(0,{\infty})$ is a continuous potential function, and $g:{\mathbb{R}}^N{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ satisfies a $Carath{\acute{e}}odory$ condition. We show the existence of at least one weak solution for the problem above without the Ambrosetti and Rabinowitz condition. Moreover, we give a positive interval of the parameter ${\lambda}$ for which the problem admits at least one nontrivial weak solution when the nonlinearity g has the subcritical growth condition.

RADIAL SYMMETRY OF POSITIVE SOLUTIONS TO A CLASS OF FRACTIONAL LAPLACIAN WITH A SINGULAR NONLINEARITY

  • Cao, Linfen;Wang, Xiaoshan
    • Journal of the Korean Mathematical Society
    • /
    • v.58 no.6
    • /
    • pp.1449-1460
    • /
    • 2021
  • In this paper, we consider the following nonlocal fractional Laplacian equation with a singular nonlinearity (-∆)su(x) = λuβ (x) + a0u (x), x ∈ ℝn, where 0 < s < 1, γ > 0, $1<{\beta}{\leq}\frac{n+2s}{n-2s}$, λ > 0 are constants and a0 ≥ 0. We use a direct method of moving planes which introduced by Chen-Li-Li to prove that positive solutions u(x) must be radially symmetric and monotone increasing about some point in ℝn.

HEAT KERNEL ESTIMATES FOR DIRICHLET FRACTIONAL LAPLACIAN WITH GRADIENT PERTURBATION

  • Chen, Peng;Song, Renming;Xie, Longjie;Xie, Yingchao
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.1
    • /
    • pp.91-111
    • /
    • 2019
  • We give a direct proof of the sharp two-sided estimates, recently established in [4, 9], for the Dirichlet heat kernel of the fractional Laplacian with gradient perturbation in $C^{1,1}$ open sets by using Duhamel's formula. We also obtain a gradient estimate for the Dirichlet heat kernel. Our assumption on the open set is slightly weaker in that we only require D to be $C^{1,{\theta}}$ for some ${\theta}{\in}({\alpha}/2,1]$.