• Title/Summary/Keyword: Fracture prevention

Search Result 212, Processing Time 0.029 seconds

The Relationship between Knowledge, Health Beliefs, and Prevention Behaviors of Osteoporotic Fracture in Patients receiving Osteoporosis Treatment (골다공증 치료를 받고 있는 환자의 지식, 건강신념, 골다공증성 골절예방행위 간의 관계)

  • Moon, Eun-Suk;Lee, Eun-Sook
    • Women's Health Nursing
    • /
    • v.16 no.2
    • /
    • pp.147-156
    • /
    • 2010
  • Purpose: This study was to examine the relationship of knowledge, health beliefs, and prevention behaviors of osteoporotic fracture in outpatients with osteoporosis. Methods: The subjects were 120 outpatients receiving osteoporosis treatment on K hospital in G city from Dec. 2007 to Feb. 2008. Questionnaires were collected and analyzed using the SPSS/WIN 12.0 program for descriptive statistics, and t-test, ANOVA, and Pearson correlation coefficient. Results: Subjects were treated for fracture about 28 months. The mean score of knowledge, health belief and prevention behaviors in subjects were $17.5{\pm}3.22$, $2.8{\pm}0.23$ and $2.8{\pm}0.38$ respectively. The score of health belief recorded the lowest point. However, the score of knowledge varied with general and disease-related characteristics of subjects. In contrast, the score of prevention behaviors did not showed any significant differences. Fracture prevention behavior in subjects showed rather higher relationship with the health belief system than the knowledge of fracture prevention. Conclusion: The present work suggested that education program for prevention behaviors of fracture should be developed to focus on altering the health belief system rather than the knowledge of osteoporotic fracture prevention. Furthermore, individual education program based on living circumstances and daily life habits should be also developed.

The Mediating Effect of Fall Risk Perception on the Relationship between Fracture Risk and Fall Prevention Behaviors in Women with Osteoporosis (골다공증 여성의 골절위험도와 낙상예방행위와의 관계에 미치는 낙상위험지각의 매개효과)

  • Lee, Eun Nam;Choi, Eun Jung;Jang, Moon Jung;Hwang, Hyun Ju
    • Journal of muscle and joint health
    • /
    • v.22 no.2
    • /
    • pp.130-137
    • /
    • 2015
  • Purpose: This study aims to establish a theoretical framework for the fall prevention behavior improvement program by verifying the associations between fracture risk, fall risk perception, and fall prevention behaviors in women with osteoporosis. Methods: A survey was conducted in 122 women who were diagnosed as osteoporosis by having T-score of the femur bone density below -2.5 standard deviation from the bone density examination performed in 2 orthopedic clinics located in B metropolitan city between July 2014 and September 2014. The risk of fracture, level of fall risk perception, and fall prevention behaviors were measured. Results: Fall risk perception had a complete mediating effect on the relationship between the fracture risk and fall prevention behaviors in women with osteoporosis. Conclusion: The perception of fall risk is important to enhance fall prevention behaviors in women with osteoporosis, and the development of various education programs to improve awareness of fall risk is needed.

Studies on the Fall Patterns for the Development of a Fracture Prevention System

  • Kim, Seong-Hyun;Kim, Gi-Beum;Kim, Young-Yook;Kwon, Tae-Kyu;Hong, Chul-Un;Kim, Nam-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.2451-2454
    • /
    • 2005
  • In recent years, the importance of the characterization of fall for a fracture prevention system keeps increasing since fracture from a fall can lead to serious health problems. Fall is one of the major sources which increase morbidity in elderly people. In terms of the cost and the influence to the quality of life, the most serious injury with hip fractures is caused by falls. The traditional methods in characterizing fall patterns have been mainly by the epidemiological surveys. With surveys, the exact data of fall patterns can not been acquired. In this paper, we measured and analyzed with the parameters related to fall pattern such as velocities and accelerations during the motion of falls using 3D motion capture program. We acquired the parameters of the fall pattern of intentional and unexpected fall. The result showed that the variation of velocity and acceleration during fall was very important in characterizing fall pattern, which of vital importance for the development of a fracture prevention system and for the safety of the elderly.

  • PDF

The Literature Review on the Effectiveness of Fall-related Hip Fracture Prevention Programs (노인의 넘어짐으로 인한 고관절 골절 예방프로그램의 효과: 문헌 고찰)

  • Lee, Se-young;Kim, Seung-su;Lim, Kitaek;Choi, Woochol Joseph
    • Physical Therapy Korea
    • /
    • v.28 no.1
    • /
    • pp.1-12
    • /
    • 2021
  • While efforts have been made to address fall-related injuries in older adults, the problem is unsolved to date. The purpose of this review is to provide a guideline for fall and injury prevention programs in older adults, based on evidence generated over the past 30 years. Research articles published between 1990 and 2020 have been searched on PubMed, using keywords, including but not limited to, falls, hip fracture, injuries, intervention, older adults, prevention, hip protector, vitamin D, safe landing strategy, and exercise. Total of 98 articles have been found and categorized into five intervention areas: exercise program, hip protector, safe landing strategy, vitamin D intake, and compliant flooring. Furthermore, the articles have been rated based on their study design: class 1, randomized controlled trials; class 2, non-randomized controlled trials; class 3, experimental studies; class 4, all other studies. Exercise programs have shown to decrease the risk of fall, and associated injuries. Hip protectors, safe landing strategy, and vitamin D intake were effective in reducing a risk and incidence of hip fracture during a fall. Furthermore, compliant flooring has also decreased hip fracture risk without affecting balance. An integrated approach combining exercise program, wearing a hip protector, teaching safe landing strategies, scheduled vitamin D intake, and compliant flooring installation, is suggested to address fall-related injuries in older adults.

Prevention and Solution of the Fracture of Nickel-Titanium Endodontic Instruments (니켈티타늄 전동파일 파절의 예방 및 처치)

  • Kim, Hyeon-Cheol
    • The Journal of the Korean dental association
    • /
    • v.54 no.8
    • /
    • pp.640-650
    • /
    • 2016
  • Nickel-Titanium (NiTi) rotary instruments have brought a big step toward "efficient" practice of endodontic procedure. The rotary files help clinicians to reduce their working time and also increase the clinical success rate with minimal procedural errors. However, NiTi instruments still have a few drawbacks including unpredictable fatigue fracture. Clinicians may reduce the potential risk of instruments fracture by following some clinical guidelines for rotary instruments. In some clinical cases of instruments fracture, we may try to remove the instruments' fragments or bypass the fragment to reach the apical canal. In some limited cases, the fractured instruments' fragments would not jeopardize the clinical prognosis of root canal treatment. Nevertheless, it is impossible to be overemphasized that the prevention of file fracture is much easier than the removal of fracture fragment. Clinicians need to understand the fracture mechanisms and, in clinic, need to discard the used instruments timely.

  • PDF

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • v.32 no.4
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

Modelling the coupled fracture propagation and fluid flow in jointed rock mass using FRACOD

  • Zhang, Shichuan;Shen, Baotang;Zhang, Xinguo;Li, Yangyang;Sun, Wenbin;Zhao, Jinhai
    • Geomechanics and Engineering
    • /
    • v.22 no.6
    • /
    • pp.529-540
    • /
    • 2020
  • Water inrush is a major hazard for mining and excavation in deep coal seams or rock masses. It can be attributed to the coalescence of rock fractures in rock mass due to the interaction of fractures, hydraulic flow and stress field. One of the key technical challenges is to understand the course and mechanism of fluid flows in rock joint networks and fracture propagation and hence to take measures to prevent the formation of water inrush channels caused by possible rock fracturing. Several case observations of fluid flowing in rock joint networks and coupled fracture propagation in underground coal roadways are shown in this paper. A number of numerical simulations were done using the recently developed flow coupling function in FRACOD which simulates explicitly the fracture initiation and propagation process. The study has demonstrated that the shortest path between the inlet and outlet in joint networks will become a larger fluid flow channel and those fractures nearest to the water source and the working faces become the main channel of water inrush. The fractures deeper into the rib are mostly caused by shearing, and slipping fractures coalesce with the joint, which connects the water source and eventually forming a water inrush channel.

A Basic Study on Fall Patterns for Fracture Prevention System (골절방지 시스템을 위한 낙상 패턴에 관한 기초 연구)

  • Kim S.H.;Kim K.;Jung S.H.;Kim G.B.;Kwon T.K.;Hong C.U.;Kim N.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1925-1928
    • /
    • 2005
  • In recent years, the importance of the characterization of fall for a fracture prevention system keeps increasing since fracture from a fall can lead to serious health problems. Fall is one of the major sources which increase morbidity in elderly people. In terms of the cost and the influence to the quality of life, the most serious injury with hip fractures is caused by falls. The traditional methods in characterizing fall patterns have been mainly by the epidemiological surveys. With surveys, the exact data of fall patterns can not been acquired. In this paper, we measured and analyzed with the parameters related to fall pattern such as velocities and accelerations during the motion of falls using 3D motion capture program. We acquired the parameters of the fall pattern of intentional and unexpected fall. The result showed that the variation of velocity and acceleration during fall was very important in characterizing fall pattern, which of vital importance for the development of a fracture prevention system and for the safety of the elderly

  • PDF

Procedure of Pressure/Temperature Curves Generation for Brittle Fracture Prevention of Reactor Vessel

  • Park, M. K.;Kim, Y. J.;Kim, J. M.;Jheon, J. H.;Kim, I. K.
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.290-295
    • /
    • 1996
  • The purpose of this study is to establish the pressure/temperature curves of Reactor Coolant System for brittle fracture prevention. The pressure/temperature curve is the basis to select RC Pump and limits to operate the plant. Based on the plant operation experience, this curve should be re-generated periodically in order to ensure the structural integrity using data from the test of reactor vessel surveilance materials to compensate for the irradiation effects. This study provides the procedure of pressure/temperature curve generation in term of brittle fracture prevention of reactor vessel. Using the UCN 3&4 data, the sample pressure/temperature curve was generated, and it was compared with those of YGN 3&4 based on the stress and $RT_{NDT}$value.

  • PDF

Application of rock mass index in the prediction of mine water inrush and grouting quantity

  • Zhao, Jinhai;Liu, Qi;Jiang, Changbao;Defeng, Wang
    • Geomechanics and Engineering
    • /
    • v.30 no.6
    • /
    • pp.503-515
    • /
    • 2022
  • The permeability coefficient is an essential parameter for the study of seepage flow in fractured rock mass. This paper discusses the feasibility and application value of using readily available RQD (rock quality index) data to estimate mine water inflow and grouting quantity. Firstly, the influence of different fracture frequencies on permeability in a unit area was explored by combining numerical simulation and experiment, and the relationship between fracture frequencies and pressure and flow velocity at the monitoring point in fractured rock mass was obtained. Then, the stochastic function generation program was used to establish the flow analysis model in fractured rock mass to explore the relationship between flow velocity, pressure and analyze the universal law between fracture frequency and permeability. The concepts of fracture width and connectivity are introduced to modify the permeability calculation formula and grouting formula. Finally, based on the on-site grouting water control example, the rock mass quality index is used to estimate the mine water inflow and the grouting quantity. The results show that it is feasible to estimate the fracture frequency and then calculate the permeability coefficient by RQD. The relationship between fracture frequency and RQD is in accordance with exponential function, and the relationship between structure surface frequency and permeability is also in accordance with exponential function. The calculation results are in good agreement with the field monitoring results, which verifies the rationality of the calculation method. The relationship between the rock mass RQD index and the rock mass permeability established in this paper can be used to invert the mechanical parameters of the rock mass or to judge the permeability and safety of the rock mass by using the mechanical parameters of the rock mass, which is of great significance to the prediction of mine water inflow and the safety evaluation of water inrush disaster management.