• Title/Summary/Keyword: Fracture stress

Search Result 2,412, Processing Time 0.031 seconds

The Effect of residual stress for fracture behavior in the laser weldment (레이저용접부의 파괴에 미치는 잔류응력의 영향)

  • Jo, Seong-Gyu;Yang, Yeong-Su
    • Proceedings of the Korean Society of Laser Processing Conference
    • /
    • 2006.06a
    • /
    • pp.3-8
    • /
    • 2006
  • The integrity of laser welded structures is decided with fracture strength and fatigue strength. This study presents fracture behavior considering residual stress in the laser welding. Experiments are conducted and analyses are performed to explore the influence of residual stress on fracture behavior of bead-on laser welded compact specimen. Fracture experiments are performed using ASTM 1820. The performed analyses included thermo-elasto-plastic analyses for residual stress and subsequent J-integral calculation. A modified J integral is calculated in the presence of residual stresses. The J-integral is path-independent for combination of residual stress field and stress due to mechanical loading. The results indicates that the tensile residual stress near crack front bring the low fracture load while the compressive residual stress bring the high fracture load compared to no residual stress specimen. These results quantitatively understand the influence of residual stress on fracture behavior.

  • PDF

The Effect of residual stress on fracture behavior in the laser weldment (레이저용접부의 파괴에 미치는 잔류응력의 영향)

  • Cho, Sung-Kyu;Yang, Young-Soo;Noh, Young-Jin
    • Laser Solutions
    • /
    • v.11 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • The integrity of laser welded structures is decided in fracture strength and fatigue strength. This study made an effort to understand the fracture behavior considering residual stress. Experiments are conducted and analyses are performed to explore the influence of residual stress on fracture behavior of bead-on laser welded compact specimen. Fracture experiments are performed using ASTM 1820. The performed analyses included thermo-elasto-plastic analyses for residual stress and subsequent J-integral calculation. A modified J integral is calculated in the presence of residual stresses. The J-integral is path-independent for combination of residual stress field and stress due to mechanical loading. The results indicates that the tensile residual stress near crack front bring the low fracture load while the compressive residual stress bring the high fracture load compared to no residual stress specimen. These results quantitatively understand the influence of residual stress on fracture behavior.

  • PDF

Evaluation of Critical Notch radius using Notch/Crack Critical Average Stress Fracture Model (노치/균열 임계평균응력 파손모델을 이용한 임계노치반경 평가)

  • 김재훈;김덕회;김기수;안병욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1358-1361
    • /
    • 2003
  • In this study, intrinsic static/dynamic fracture toughness of Al 7175-T74 are evaluated from the apparent static/dynamic toughness of notched specimen. The notch/crack critical average stress fracture model is suggested to establish the relationship to predict the intrinsic fracture toughness from the apparent fracture toughness of a notched specimen. The notch/crack critical average stress fracture model is established using the relation between the notch root radius and the effective distance calculated by finite element analysis. It is conclude that the true fracture toughness can be estimated from test results of apparent fracture toughness measured by using a notched specimen. Also, critical notch root radius can be predicted by notch/crack critical average stress fracture model.

  • PDF

Development of Stress-Modified Fracture Strain Criterion for Ductile Fracture of API X65 Steel (API X65 강의 연성파괴 해석을 위한 삼축응력 영향을 고려한 파괴변형률 기준 개발)

  • Oh Chang-Kyun;Kim Yun-Jae;Park Jin-Moo;Baek Jong-Hyun;Kim Woo-Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.12 s.243
    • /
    • pp.1621-1628
    • /
    • 2005
  • This paper presents a stress-modified fracture strain for API X65 steel used for gas pipeline, as a function of stress triaxiality. To determine the stress-modified fracture strain, tension test of bars with four different notch radii, made of API X65 steel, is firstly performed, from which true fracture strains are determined as a function of notch radius. Then detailed elastic-plastic, large strain finite element (FE) analyses are performed to estimate variations of stress triaxiality in the notched bars with load. Combining experimental with FE results provides the true fracture strain as a function of stress triaxiality, which is regarded as a criterion of ductile fracture. Application of the developed stress-modified fracture strain to failure prediction of gas pipes made of API X65 steel with various types of defects is discussed.

Brittle fracture analysis of the offset-crack DCDC specimen

  • Ayatollahi, M.R.;Bagherifard, S.
    • Structural Engineering and Mechanics
    • /
    • v.29 no.3
    • /
    • pp.301-310
    • /
    • 2008
  • Applications of fracture mechanics in the strength analysis of ceramic materials have been lately studied by many researchers. Various test specimens have been proposed in order to investigate the fracture resistance of cracked bodies under mixed mode conditions. Double Cleavage Drilled Compression (DCDC) specimen, with a hole offset from the centerline is a configuration that is frequently used in subcritical crack growth studies of ceramics and glasses. This specimen exhibits a strong crack path stability that is due to the strongly negative T-stress term. In this paper the maximum tensile stress (MTS) criterion is employed for investigating theoretically the initiation of brittle fracture in the DCDC specimen under mixed mode conditions. It is shown that the T-stress has a significant influence on the predicted fracture load and the crack initiation angle. The theoretical results suggest that brittle fracture in the DCDC specimen is controlled by a combination of the singular stresses (characterized by KI and KII) and the non-singular stress term, T-stress.

An Evaluation Method of Fracture Toughness on Interface Crack in Friction Welded Dissimilar Materials (이종 마찰용접재의 계면균열에 대한 파괴인성의 평가방법)

  • Chung, Nam-Yong;Park, Cheol-Hee
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.171-177
    • /
    • 2007
  • In this paper, an evaluation method of fracture toughness on interface cracks was investigated in friction welded dissimilar materials with interfacial edge cracks. To establish a reasonable strength evaluation method and fracture criterion, it is necessary to analyze stress intensity factor under the load and residual stress condition on friction welded interface between dissimilar materials. The friction welded specimens with an edged crack were prepared for analysis of stress intensity by using the boundary element method (BEM) and the fracture toughness. A quantitative fracture criterion for friction welded STS 304/SM 45C with interface crack is suggested by using stress intensity factor, F and the results of fracture toughness experiment.

Effect of Compressive Stress on Multiaxial Loading Fracture of Alumina Tubes (알루미나 튜브의 복합하중 파괴에 미치는 압축응력의 영향)

  • Kim, K.T.;Suh, J.
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.10
    • /
    • pp.810-818
    • /
    • 1991
  • Fracture responses of Al2O3 tubes were investigated for various loading paths under combined tension/torsion. The fracture criterion did not depend on loading paths. Fracture angles agreed well with the maximum tensile stress criterion. As the loading condition approaches a shear dominant state, the tensile principal stress at fracture increases compared to the uniaxial fracture strength. By using the Weibull modulus obtained from tension and torsion tests, the Weibull statistical fracture strengths were compared with experimental data. This comparison suggests that fracture may occur at the surface of the specimen when tensile stress is dominant, but within the volume of the specimen when shear stress is dominant. The Weibull fracture strength increased as the loading conition approached a shear dominant state, but underestimated compared to experimental data. Finally, a new fracture criterion was proposed by including the effect of compressive principal stress. The proposed criterion agreed well with experimental data of Al2O3 tubes not only at combined tension/torsion but also at balanced biaxial tension.

  • PDF

Experimental Investigation on the Mechanial Behavior of Graphite/Epoxy Composites Under Hydrostatic Pressure (고압하에서의 적층복합재의 기계적 거동에 대한 실험적 고찰)

  • Rhee, K.Y.;Pae, K.D.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.8
    • /
    • pp.2431-2435
    • /
    • 1996
  • In order to determine the effects of hydrostatic pressure on the mechanical behavior of graphite fiber reinforced composites, the modulus, fracture stress(maximum stress), and fracture strain of graphite/epoxy composites have been determined as a function of pressure. Composite specimens used in this study were 90-deg unidirectional and had a 60% fiber volume fraction. Compressive tests under five different pressure levels were conducted. The result showed the modulus measured from as initial slope of stress-strain curve increased bilinearly with pressure with a break at 200 MPa. It was also found that fracture stress and fracture strain increased in a linear fashion with pressure.

Bilateral Pedicle Stress Fracture Accompanying Spondylolysis in a Patient with Ankylosing Spondylitis

  • Kim, Hyeun-Sung;Ju, Chang-Il;Kim, Seok-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.48 no.1
    • /
    • pp.70-72
    • /
    • 2010
  • Bilateral pedicle stress fracture is a rare entity and few cases have been reported in the literature. Furthermore, the majority of these reports concern previous spine surgery or stress-related activities. Here, the authors report ankylosing spondylitis as a new cause of bilateral pedicle stress fractures accompanying spondylolysis. The reported case adds to the literature on bilateral pedicle stress fracture and spondylolysis by documenting that ankylosing spondylitis is another cause of this condition.

Bending Creep and Creep Facture of Alumina under High-Temperature (알루미나의 고온 굽힘 크리프 및 크리프 파괴)

  • 김지환;권영삼;김기태
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1994.03a
    • /
    • pp.167-174
    • /
    • 1994
  • The creep behavior and creep fracture of alumina at high temperature were investigated under four point flexural test. The steady-state creep behavior was observed at low bending stress and the primary creep until fracture was observed at high bending stress. The loading history of bending stress did not affect on the steady-stated creep rate. Intergranular fracture was dominant for fracture of alumina at room and high temperature. However, transgranular fracture was dominant on creep fracture of alumina under high temperature by nuclueation and growth of microcracks due to residual flaws or cavities in the material.

  • PDF