• Title/Summary/Keyword: Free matrix based integral inequality

Search Result 3, Processing Time 0.018 seconds

Stability of time-delayed Linear Systems Based on Augmented LKF Including Time-delay Product Quadratic Terms (시간지연 곱 이차항을 포함하는 LKF에 기초한 시간지연 선형 시스템의 안정성)

  • Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.5
    • /
    • pp.651-655
    • /
    • 2018
  • In this paper, based on an augmented Lyapunov-Krasovskii functional(LKF) with time-delay product quadratic terms, the stability result in the form of linear matrix inequality(LMI) is proposed. In getting an LMI result, the free matrix based integral inequality is used. Finally, two well-known numerical examples are given to demonstrate the usefulness of the proposed result.

Stability of Time-delayed Linear Systems using an Improved Integral Inequality (개선된 적분부등식을 이용한 시간지연 선형 시스템의 안정성)

  • Kim, Jin-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.806-811
    • /
    • 2017
  • This paper considers the delay-dependent stability of linear systems with a time-varying delay in the frame work of Lyapunov-Krasovskii functional(LKF) approach. In this approach, an integral inequality is essential to estimate the upper bound of time-derivative of LKF, and a less conservative one is needed to get a less conservative stability result. In this paper, based on free weighting matrices, an improved integral inequality encompassing well-known results is proposed and then a stability result in the form of linear matrix inequality is derived based on an augmented LKF. Finally, two well-known numerical examples are given to demonstrate the usefulness of the proposed result.

Delay-dependent Stabilization of Singular Systems with Multiple Internal and External Incommensurate Constant Point Delays

  • Xie, Yong-Fang;Gui, Wei-Hua;Jiang, Zhao-Hui
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.4
    • /
    • pp.515-525
    • /
    • 2008
  • In this paper, the problem of delay-dependent stabilization for singular systems with multiple internal and external incommensurate constant point delays is investigated. The condition when a singular system subject to point delays is regular independent of time delays is given and it can be easily test with numerical or algebraic methods. Based on Lyapunov-Krasovskii functional approach and the descriptor integral-inequality lemma, a sufficient condition for delay-dependent stability is obtained. The main idea is to design multiple memoryless state feedback control laws such that the resulting closed-loop system is regular independent of time delays, impulse free, and asymptotically stable via solving a strict linear matrix inequality (LMI) problem. An explicit expression for the desired memoryless state feedback control laws is also given. Finally, a numerical example illustrates the effectiveness and the availability for the proposed method.