• 제목/요약/키워드: Frequency Identification

검색결과 2,121건 처리시간 0.03초

Structural modal identification through ensemble empirical modal decomposition

  • Zhang, J.;Yan, R.Q.;Yang, C.Q.
    • Smart Structures and Systems
    • /
    • 제11권1호
    • /
    • pp.123-134
    • /
    • 2013
  • Identifying structural modal parameters, especially those modes within high frequency range, from ambient data is still a challenging problem due to various kinds of uncertainty involved in vibration measurements. A procedure applying an ensemble empirical mode decomposition (EEMD) method is proposed for accurate and robust structural modal identification. In the proposed method, the EEMD process is first implemented to decompose the original ambient data to a set of intrinsic mode functions (IMFs), which are zero-mean time series with energy in narrow frequency bands. Subsequently, a Sub-PolyMAX method is performed in narrow frequency bands by using IMFs as primary data for structural modal identification. The merit of the proposed method is that it performs structural identification in narrow frequency bands (take IMFs as primary data), unlike the traditional method in the whole frequency space (take original measurements as primary data), thus it produces more accurate identification results. A numerical example and a multiple-span continuous steel bridge have been investigated to verify the effectiveness of the proposed method.

Blind modal identification of output-only non-proportionally-damped structures by time-frequency complex independent component analysis

  • Nagarajaiah, Satish;Yang, Yongchao
    • Smart Structures and Systems
    • /
    • 제15권1호
    • /
    • pp.81-97
    • /
    • 2015
  • Recently, a new output-only modal identification method based on time-frequency independent component analysis (ICA) has been developed by the authors and shown to be useful for even highly-damped structures. In many cases, it is of interest to identify the complex modes of structures with non-proportional damping. This study extends the time-frequency ICA based method to a complex ICA formulation for output-only modal identification of non-proportionally-damped structures. The connection is established between complex ICA model and the complex-valued modal expansion with sparse time-frequency representation, thereby blindly separating the measured structural responses into the complex mode matrix and complex-valued modal responses. Numerical simulation on a non-proportionally-damped system, laboratory experiment on a highly-damped three-story frame, and a real-world highly-damped base-isolated structure identification example demonstrate the capability of the time-frequency complex ICA method for identification of structures with complex modes in a straightforward and efficient manner.

Improved Correlation Identification of Subsurface Using All Phase FFT Algorithm

  • Zhang, Qiaodan;Hao, Kaixue;Li, Mei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권2호
    • /
    • pp.495-513
    • /
    • 2020
  • The correlation identification of the subsurface is a novel electrical prospecting method which could suppress stochastic noise. This method is increasingly being utilized by geophysicists. It achieves the frequency response of the underground media through division of the cross spectrum of the input & output signal and the auto spectrum of the input signal. This is subject to the spectral leakage when the cross spectrum and the auto spectrum are computed from cross correlation and autocorrelation function by Discrete Fourier Transformation (DFT, "To obtain an accurate frequency response of the earth system, we propose an improved correlation identification method which uses all phase Fast Fourier Transform (APFFT) to acquire the cross spectrum and the auto spectrum. Simulation and engineering application results show that compared to existing correlation identification algorithm the new approach demonstrates more precise frequency response, especially the phase response of the system under identification.

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • 제26권4호
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

Output only system identification using complex wavelet modified second order blind identification method - A time-frequency domain approach

  • Huang, Chaojun;Nagarajaiah, Satish
    • Structural Engineering and Mechanics
    • /
    • 제78권3호
    • /
    • pp.369-378
    • /
    • 2021
  • This paper reviewed a few output-only system identification algorithms and identified the shortcomings of those popular blind source separation methods. To address the issues such as less sensors than the targeted modal modes (under-determinate problem), repeated natural frequencies as well as systems with complex mode shapes, this paper proposed a complex wavelet modified second order blind identification method (CWMSOBI) by transforming the time domain problem into time-frequency domain. The wavelet coefficients with different dominant frequencies can be used to address the under-determinate problem, while complex mode shapes are addressed by introducing the complex wavelet transformation. Numerical simulations with both high and low signal-to-noise ratios validate that CWMSOBI can overcome the above-mentioned issues while obtaining more accurate identified results than other blind identification methods.

A Frequency Response Function-Based Damage Identification Method for Cylindrical Shell Structures

  • Lee, U-Sik;Jeong, Won-Hee;Cho, Joo-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제18권12호
    • /
    • pp.2114-2124
    • /
    • 2004
  • In this paper, a structural damage identification method (SDIM) is developed for cylindrical shells and the numerically simulated damage identification tests are conducted to study the feasibility of the proposed SDIM. The SDIM is derived from the frequency response function solved from the structural dynamic equations of damaged cylindrical shells. A damage distribution function is used to represent the distribution and magnitudes of the local damages within a cylindrical shell. In contrast with most existing modal parameters-based SDIMs which require the modal parameters measured in both intact and damaged states, the present SDIM requires only the FRF-data measured in the damaged state. By virtue of utilizing FRF-data, one is able to make the inverse problem of damage identification well-posed by choosing as many sets of excitation frequency and FRF measurement point as needed to obtain a sufficient number of equations.

무선식별(Radio Frequency IDentification)시스템 기술기준 연구 (A Study on Technical Regulation for Radio Frequency Identification Systems)

  • 장동원
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2003년도 추계종합학술대회
    • /
    • pp.61-65
    • /
    • 2003
  • 본 고에서는 무선식별시스템의 기술 표준화에 대해서 기술하였다. 무선식별시스템은 최근 모든 산업에 폭발적으로 사용되고 있다. 무선식별시스템은 적당한 트랜스폰더 즉 태그에 데이터를 보내서 그 응용에 만족하는 응답을 즉시 받는 것이다. 본 고에서는 국제적인 표준화 동향 및 기술에 대해서 분석하고, 국내에서 RFID 기술을 응용하기 위한 기술기준에 대해서 기술하였다.

  • PDF

활어 개체어의 광대역 음향산란신호로부터 어종식별을 위한 시간-주파수 특징 추출 (Time-Frequency Feature Extraction of Broadband Echo Signals from Individual Live Fish for Species Identification)

  • 이대재;강희영;박용예
    • 한국수산과학회지
    • /
    • 제49권2호
    • /
    • pp.214-223
    • /
    • 2016
  • Joint time-frequency images of the broadband acoustic echoes of six fish species were obtained using the smoothed pseudo-Wigner-Ville distribution (SPWVD). The acoustic features were extracted by changing the sliced window widths and dividing the time window by a 0.02-ms interval and the frequency window by a 20-kHz bandwidth. The 22 spectrum amplitudes obtained in the time and frequency domains of the SPWVD images were fed as input parameters into an artificial neural network (ANN) to verify the effectiveness for species-dependent features related to fish species identification. The results showed that the time-frequency approach improves the extraction of species-specific features for species identification from broadband echoes, compare with time-only or frequency-only features. The ANN classifier based on these acoustic feature components was correct in approximately 74.5% of the test cases. In the future, the identification rate will be improved using time-frequency images with reduced dimensions of the broadband acoustic echoes as input for the ANN classifier.

전자유도방식에 의한 무선인식시스템 구현 (Development of Radio Frequency Identification System by Electromagnetic Induction)

  • 김경일;박영하;김관호;이영철
    • 한국전자파학회논문지
    • /
    • 제8권3호
    • /
    • pp.232-242
    • /
    • 1997
  • 본 논문에서는 이동중인 물체의 인식거리 확대와 트랜스폰더의 저전력소비를 갖는 능동형 무선인식시스템을 설계하였다. 설계된 무선인식시스템의 송신주파수는 120 kHz, 응답주파수는 60 kHz로서 부반송파에 의한 ASK방식으로 쌍방향 전송방식을 채택하였다. 실험결과 9600 bps의 전송속도로 40 km의 이동속도를 갖는 물체에 대하여 무선인식 쌍방향 전송거리는 2 m를 나타내었으며 이때 응답기의 전류소비량은 15 ${mu}A$로서 우수한 저전력소모의 특성을 얻을 수 있었다.

  • PDF

유한요소모델을 이용한 비선형 시스템의 매개변수 규명 (Nonlinear System Parameter Identification Using Finite Element Model)

  • 김원진;이부윤
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1593-1600
    • /
    • 2000
  • A method based on frequency domain approaches is presented for the nonlinear parameters identification of structure having nonlinear joints. The finite element model of linear substructure is us ed to calculating its frequency response functions needed in parameter identification process. This method is easily applicable to a complex real structure having nonlinear elements since it uses the frequency response function of finite element model. Since this method is performed in frequency domain, the number of equations required to identify the unknown parameters can be easily increased as many as it needed, just by not only varying excitation amplitude but also selecting excitation frequencies. The validity of this method is tested numerically and experimentally with a cantilever beam having the nonlinear element. It was verified through examples that the method is useful to identify the nonlinear parameters of a structure having arbitary nonlinear boundaries.