• Title/Summary/Keyword: Friction Materials

Search Result 1,466, Processing Time 0.026 seconds

Influence of the Relative Amount of Graphite and Zirconium Silicate on Friction Characteristics (흑연과 지르콘의 상대적인 함량에 따른 마찰특성에 관한 연구)

  • Kim, Seong-Jin;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.166-172
    • /
    • 2000
  • Friction characteristics of phenolic resin-based friction composites containing threedifferent relative amounts of graphite and zirconium silicate were investigated by using a pad-on-disk type friction tester. Constant temperature test and constant interval test at three different initial temperatures(100. 200, 300$^{\circ}C$) were performed to examine the effects of friction heat on friction characteristics at elevated temperature. The friction composite(FMO.7) with higher content of ZrSiO$_4$showed unstable friction force at higher temperature and resulted in larger fluctuations of vibration during friction test. The abrasive action of ZrSiO$_4$in friction composite impeded stable transfer film and induced higher friction heat at friction interface. Friction oscillations according to the temperature were associated with the formation of transfer film(i'd body layer) on the friction composite and the counter part.

  • PDF

Friction Characteristics of Automotive Friction Materials with Ceramic Powder Contents (자동차용 마찰재에 함유된 세라믹분말의 함량에 따른 마찰특성)

  • Lee, Yong-Jin;Ryu, Jae-Kyung;Kim, Taik-Nam
    • Korean Journal of Materials Research
    • /
    • v.19 no.7
    • /
    • pp.403-406
    • /
    • 2009
  • The friction characteristics of automotive brake friction materials that contained different ceramic content were investigated. Several kinds of raw materials, such as resin-based binder, reinforcing fiber, friction restraint, abrasive, and filling materials were mixed, pressed, and heated in order to make the brake friction materials. The contents of SiC and $BaSO_4$ changed from 5 vol% to 20 vol%, respectively. In addition to this, the content of $Al_2O_3$ adjusted from 1 vol% to 16 vol%. The surface morphology of the SiC containing sample appeared rough while more debris was observed when the contents of SiC increased. This implies that the SiC containing brake composite was not adequate for the automobile. However, the relatively smooth surface was observed in samples that contained the $Al_2O_3$. But the roughness was low with a content of 11 vol% $Al_2O_3$ compared to the other samples. This is consistent with the abrasive properties of the samples. In the case of $BaSO_4$ containing samples, the smoothes surface was observed in the contents of 15 vol% $BaSO_4$. Thus, it was concluded that the 11 vol% $Al_2O_3$ and 15 vol% $BaSO_4$ containing composite would be the optimum content for the brake composite. Similar to the results of the surface morphology, the abrasion resistance consistently decreased when the content of SiC increased. On the contrary, the sample that contained 11 vol% $Al_2O_3$ and 15 vol% $BaSO_4$ showed the highest abrasion resistance compared to the other samples.

Tribological Characteristics for High Perfomance Metallic Friction Materials (고성능 금속마찰재의 트라이볼로지적 특성)

  • 김석삼;김재호;안효준
    • Tribology and Lubricants
    • /
    • v.14 no.1
    • /
    • pp.45-53
    • /
    • 1998
  • Friction and wear test for two kinds of Cu-based sintered metallic friction material against cast iron disk was carried out by plate-on-disk type friction and wear tester to investigate the friction and wear characteristics of brake system in severe condition. In this experimental study, the counter specimen was cast iron which is being used generally in brakes of heavy duty equipments. Test friction materials were A type which was manufactured by foreign company and B type by domestic company. Friction coefficient and wear volume were measured and compared with each other. The experiment was performed under room temperature. The worn surface of cast iron disk and friction material were observed by scanning electron microscope. The temperature of surface of disk was measured continuously by the non-contacting thermometer. It was found that A type friction material had stable friction coefficient over the wide range of sliding condition, but B type friction material had unstable friction coefficient and lower value of 0.2 under the severe sliding condition.

Influence of Graphite Content and Shape on the Cu-Based Sintered Friction Materials (동계 소결마찰재에 대한 흑연함량과 형상의 영향)

  • Choe, Byeong-Ho;Lee, Jong-Hyeong;Song, Gyeong-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 1996
  • Influence of frictional and mechanical properties was studied with the content(8-18 wt.%) and shapes(flake of irregular) of graphite that was used as lubricant components of copper-based sintered materials. The density, hardness and bending strength of friction materials with the shape of flake graphite were lower and decreased rapidly than that of irregular, as the content of graphite increases up to 18 wt.%. In friction test, wear rate was about 2.0-$2.5{\times}10^{-7}\textrm{cm}^3$/kgf.m and coefficient of friction was 0.30-0.37, independent on graphite content and shape. As the temperature of friction materials increased, wear rate decreased rapidly because oxides such as $Cu_2O$ and $SnO_2$ in the surface of friction material were formed.

High Temperature Fade Behavior of Brake Friction Materials at Extreme Braking Conditions (실험통계법을 이용한 마찰재의 고온 마찰특성에 대한 고찰)

  • Ko, Kil-Ju;Park, Sang-Jin;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.117-126
    • /
    • 2001
  • Tribological properties of high temperature fade were investigated by changing relative amounts of ingredients in the brake friction material. Based on a simple experimental formulation containing 10 ingredients, friction materials were tested using a pad-on-disk type friction tester. Twenty-five friction material specimens with different relative amounts of the ingredients were manufactured according to the constrained mixture design .The difference ($\Delta$${\mu}$=${\mu}$$\sub$max/. -${\mu}$$\sub$min/. ) of friction coefficients was measured to represent the high temperature fade. Results from elevated temperature tests showed that five ingredients including cashew, graphite, Sb$_2$S$_3$, ZrSiO$_4$, and Cu fibers played important roles on $\Delta$${\mu}$. In order to find relative importance on fade phenomena among these ingredients, ANOVA(analysis of variance) was performed in this investigation. Thirty-two friction material specimens by changing ${\pm}$50vol.% of these five ingredients were tested to examine the relative importance. Results showed that cashew, graphite '||'&'||' Sb$_2$S$_3$, and cashew '||'&'||' graphite aggravated the fade behavior and Cu fibers improved on fade resistance.

  • PDF

Development of Novel Composite Powder Friction Modifier for Improving Wheel-rail Adhesion in High-speed Train (고속열차 점착계수 향상을 위한 신규 복합재료 분말 마찰조절재 개발 및 점착력 특성 평가)

  • Oh, Min Chul;Ahn, Byungmin
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.501-506
    • /
    • 2018
  • With the recent remarkable improvements in the average speeds of contemporary trains, a necessity has arisen for the development of new friction modifiers to improve adhesion characteristics at the wheel-rail interface. The friction modifier must be designed to reduce slippage or sliding of the trains' wheels on the rails under conditions of rapid acceleration or braking without excessive rolling contact wear. In this study, a novel composite material consisting of metal, ceramic, and polymer is proposed as a friction modifier to improve adhesion between wheels and rails. A blend of Al-6Cu-0.5Mg metallic powder, $Al_2O_3$ ceramic powder, and Bakelite-based polymer in various weight-fractions is hot-pressed at $150^{\circ}C$ to form a bulk composite material. Variation in the adhesion coefficient is evaluated using a high-speed wheel-rail friction tester, with and without application of the composite friction modifier, under both dry and wet conditions. The effect of varying the weighting fractions of metal and ceramic friction powders is detailed in the paper.

Effects on the Joining Condition of TiAl Alloy and SCM440 by Servo Motor Type Friction Welding (서보모터방식 마찰용접을 이용한 TiAl 합금과 SCM440의 접합에 미치는 용접조건의 영향)

  • Park, Jong-Moon;Kim, Ki-Young;Kim, Kyoung-Kyun;Oh, Myung-Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.29 no.2
    • /
    • pp.66-74
    • /
    • 2016
  • In this study, characteristics of TiAl alloy and SCM440 (Cr-Mo steel) have been investigated with the various joining condition by servo motor type friction welder. The experimental factors of friction welder used in this study are spindle revolution, friction speed, and distance, upset speed and distance, respectively. Servo motor type friction welder could be controlled by the level of oil pressure, and it could be performed by position control dependence of electrical energy. Mechanical properties and morphology of welded interface were characterized by various joining condition. This aroused due to the bond strength dependence on friction heat and size of the heat affected zone. Therefore, it is necessary to have enough friction heat and decreased heat affected zone for good friction welding between dissimilar metals. An optimum bond was obtained between TiAl alloy and SCM440 by controlling friction speed and distance. At the spindle revolution 4,000 rpm, friction speed 120 mm/min, friction distance 15 mm, the bond strength was found to be 312 MPa.

Analysis of Sliding Friction and Wear Properties of Clutch Facing for Automobile (Part 2) (자동차용 클러치 마찰재의 미끄럼마찰마모특성 해석(제2보 마찰특성))

  • Lee Han-young;Kim Geon-young;Hur Man-Dae
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.77-82
    • /
    • 2005
  • In previous paper, the wear properties of clutch facing materials with two different copper amounts against fly-wheel materials used in the clutch system were investigated by sliding wear tests at different applied loads and speeds. This paper have been aimed to evaluate the friction properties for clutch facing materials at the same test conditions as the previous paper. The experimental results indicated that the friction properties of clutch facing materials are influenced from the thermal conductivities of the clutch facing material and the counter material. The clutch facing material with the lower thermal conductivity and the fly-wheel material with the higher thermal conductivity showed the low and stable friction coefficient in the range of high sliding speed. This appears to be due to the formation of a film on the surface of the fly-wheel material.

Study on Dependence of Friction Characteristics of Sintered Brake Friction Materials on Graphite Shape and Ratio with regard to Speeding up Rapid Transit System (도시철도 고속화에 대비한 금속계 소결마찰재에서의 흑연 형상 및 비율에 따른 마찰특성 연구)

  • Kim, Young Kyu;Lee, Hi Sung
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.242-247
    • /
    • 2013
  • This study aims to establish the fundamental basis for the design of materials used in high-speed trains, by using a lab-scale dynamometer to evaluate the characteristic behavior of metallic sintered friction materials in relation to the shape of graphite. The test results clearly demonstrate that when flake graphite and granular graphite are added equivalently, the average coefficient of friction is much lower, and it is less influenced by speed variation; moreover, friction wear is observed to be insignificantly low. Adding flake graphite increases the coefficient of friction, which leads to higher friction wear. In addition, the roughness of the disc surface was equivalent regardless of the shape of the graphite.

The Roles of Reinforcing Fibers on the Performance of Automotive Brake Pads (자동차용 마찰재의 성능에 미치는 강화섬유의 역할)

  • Lim, Hyun-Woo;Yoon, Ho-Gyu;Jang, Ho
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2000.06a
    • /
    • pp.173-179
    • /
    • 2000
  • The friction and wear characteristics of brake friction materials reinforced with aramid fiber, carbon fiber, glass fiber, and potassium titanate whiskers were investigated using a pad-on-disk type friction tester. In particular, the morphology of rubbing surfaces was carefully investigated to correlate the friction performance and properties of transfer films. The aramid fiber reinforced specimen showed severe oscillation of friction coefficient at low speed and low applied pressure. The carbon fiber reinforced specimen showing better friction stability exhibited uniform and stable transfer film than any other specimens. The glass fiber reinforced specimen showed unstable friction changes at high speed and high-applied pressure and the non-uniform transfer film was observed in both friction material and rotor surface. The potassium titanate whiskers reinforced specimen showed stable coherent transfer film. The wear test exhibited the potassium titanate whiskers reinforced specimen was lowest in wear amount and glass fiber reinforced specimen showed the severe wear.

  • PDF