• Title/Summary/Keyword: Friction Weld

Search Result 211, Processing Time 0.021 seconds

Devel opment of Weld Strength Analysis for Dessimilar Metal Friction Welds by Ultrasonic Technique (초음파법에 의한 이종재료 마찰용접강도 해소법의 개발)

  • 오세규;김동조
    • Journal of Ocean Engineering and Technology
    • /
    • v.2 no.1
    • /
    • pp.135-149
    • /
    • 1988
  • Friction welding has been shown to have significant economic and technical advantages. However, one of the major concerns in using friction welding is the reliability of the weld quality. No reliable nondestructive test method is available at present for detecting weld quality, particularly in a production environment. Friction welds are formed by the mechanisms of diffusion as well as mechanical interlocking. The severe plastic flow at the interface by forge action of the process brings the subsurfaces so close together that detection of any unbonded area becomes very difficult. This paper presents an attempt to determine the friction weld strength quantitatively using the ultrasonic pulse-echo method. Instead of detecting flaws or cracks at the interface, the new approach calculates the coefficient of reflection based on measured amplitudes of the echoes. It has been finally confirmed that this coefficient could provide the quantitative relationship to the weld quality such as tensile strength, torsional strength, impact value, hardness, etc. So a new nondestructive analysis system of friction weld strength of dissimilar metals using an ultrasonic technique could be well developed.

  • PDF

Corrosion Behavior of Arc Weld and Friction Stir Weld in Al 6061-T6 Alloys

  • Yoon, Byoung-Hyun;Kim, Heung-Ju;Chang, Woong-Seong;Kweon, Young-Gak
    • Corrosion Science and Technology
    • /
    • v.5 no.6
    • /
    • pp.196-200
    • /
    • 2006
  • For the evaluation of corrosion resistance of Al 6061-T6 alloy, Tafel method and immersion test was performed with Friction Stir Weld(FSW) and Gas Metal Arc Weld(GMAW). The Tafel and immersion test results indicated that GMA weld was severely attacked compared with those of friction stir weld. It may be mainly due to the galvanic corrosion mechanism act on the GMA weld.

A Study on the Mechanical Properties of the Friction Welding with Hollow and Solid Shaft of SM45C (SM45C의 중실축과 중공축의 마찰용접 특성에 관한 연구)

  • Koo, Keon-Seop;Choe, Won-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.19 no.6
    • /
    • pp.841-846
    • /
    • 2010
  • The present study examined the mechanical properties of the friction welding with hollow and solid shaft of SM45, of which the diameter is 25.2mm and 33mm. Friction welding was conducted at welding conditions of 2,000rpm, friction pressure of 50MPa, upset pressure of 70MPa, friction time of 0.4sec to 1.4sec by increasing 0.2sec, upset time of 2.0 sec including variable such as friction time are following. Under these conditions, a tensile test, a hardness test and a microstructure of weld interface were studied. The results were as follows : When the friction time was 1.0 seconds under the conditions, the maximum tensile strength of the friction weld happened to be 1,094MPa, which is 120% compared with the tensile strength of SM45C base metal. The upset length linearly increased as friction time increased. According to the hardness test, the hardness distribution of the weld interface was formed from 475Hv to 739Hv. HAZ(Heat Affected Zone) was formed from the weld interface to 2mm of SM45C.

Study on Friction Welding of Torsion Bar Material(II) - Effect of PWHT on Friction Weld Quality- (토션바재의 마찰용접에 관한 연구(II) -용접 후열처리가 마찰용접 품질에 미치는 영향-)

  • Oh, Sae-Kyoo;Lee, Jong-Du
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.94-99
    • /
    • 1990
  • This paper deals with investigating experimentally the effects of PWHT on the weld quality such as strength, toughness, hardness and micro-structure of the welded joints in friction welding of torsion bar material SUP9A bar to bar. The results obtained are summarized as follows; 1) It was certified that the condition of the post-weld heat treatment(PWHT) for the friction welded joints was very satisfactory because both strength and toughness of the joints were improved as almost same as those of the base metal or better by the PWHT. 2) The peak of hardness distribution of the friction welded joints can be eliminated by PWHT, resulting in being almost equalized at the weld interface, the HAZ(heat affected zone) and the base metal. 3) The micro-structure of the base meta., HAZ and weld interface(WI) of friction welded joints welded at the optimum welding condition consists of the same sorbite structure obtained by PWHT and fined sorbite at WI, resulting in increasing toughness as well as strength, and no micro structural defect has been found at the friction welded zone.

  • PDF

Study on Friction Welding of Torsion Bar Material(II) - Effect of PWHT on Friction Weld Quality- (토션바재의 마찰용접에 관한 연구(II) -용접 후열처리가 마찰용접 품질에 미치는 영향-)

  • Oh, Sae-Kyoo;Lee, Jong-Du
    • Journal of Ocean Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.244-244
    • /
    • 1990
  • This paper deals with investigating experimentally the effects of PWHT on the weld quality such as strength, toughness, hardness and micro-structure of the welded joints in friction welding of torsion bar material SUP9A bar to bar. The results obtained are summarized as follows; 1) It was certified that the condition of the post-weld heat treatment(PWHT) for the friction welded joints was very satisfactory because both strength and toughness of the joints were improved as almost same as those of the base metal or better by the PWHT. 2) The peak of hardness distribution of the friction welded joints can be eliminated by PWHT, resulting in being almost equalized at the weld interface, the HAZ(heat affected zone) and the base metal. 3) The micro-structure of the base meta., HAZ and weld interface(WI) of friction welded joints welded at the optimum welding condition consists of the same sorbite structure obtained by PWHT and fined sorbite at WI, resulting in increasing toughness as well as strength, and no micro structural defect has been found at the friction welded zone.

Optimization on Bar-to-Bar Similar Friction Welding of Hydraulic Valve Spool Steels and the Weld Strength Properties and its AE Evaluation (유공압밸브스풀용 강재의 봉 대 봉 동종대 마찰용접의 최적화와 용접강도 특성 및 AE품질 평가)

  • 오세규;이경우;전태언;오명석;이원석
    • Journal of Ocean Engineering and Technology
    • /
    • v.10 no.2
    • /
    • pp.69-76
    • /
    • 1996
  • In-process quality control and high reliability of the weld are the major concerns in applying friction welding to the economical and qualified mass-production. Experimental examinations and quantitative analysis were performed for the optimiaztion of similar friction welding of hydraulic valve spool steels(SNCM220, SCM435, SACM645, SCM415, ${\varphi}24). The quantitative correlations were found between the initial cumulative counts of acoustic emission(AE) occurring during plastic deformation periods of the welding and the fatigue life as well as weld strength and welding conditions. A real-time evaluation system was developed for the friction weld quality by AE.

  • PDF

Characteristics of Friction Welding of Bulk Metallic Glass Rods and Tubes (벌크 비정질 금속 봉재 및 튜브재의 마찰접합 특성)

  • Shin, Hyung-Seop;Park, Jung-Soo;Jung, Yoon-Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.7
    • /
    • pp.687-692
    • /
    • 2009
  • The friction welding of Zr-based bulk metallic glass (BMG) rods and tubes to similar BMGs, and to crystalline metals were performed. An infrared thermal imager (FLIR-Thermal Cam SC-2000) was used to measure the temperature distribution at joining interface of the specimens during friction welding. All BMGs adopted in this study showed a successful friction joining to similar BMG. The shape of the protrusion formed at the weld interface were examined. In order to characterize the friction weld interface, the micrographic observation and the X-ray diffraction analysis on the weld cross-section were carried out. The obtained results were discussed based on the temperature distribution measured at the weld interface A successful joining of the BMGs to crystalline metals could be obtained for certain pairs of the material combination through the precise control of the friction condition. The residual strength after dissimilar friction welding of BMG was evaluated by the four-point bending test and compared with the cases of friction welding to similar materials.

A Study on the Properties in Friction Weldability of Dissimilar Aluminum Alloys A2024-T6/ A6061-T6 (A2024-T6/ A6061-T6의 마찰용접 특성에 관한 연구)

  • Lee Se-Gyoung;Min Taeg-Ki
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.63-69
    • /
    • 2006
  • This study deals with the friction welding of A2024- T6 to A6061- T6; The friction time was variable conditions under the conditions of spindle revolution of 2000rpm, friction pressure of 50MPa, upset pressure of 100MPa, and upset time of 5.0seconds. Under these conditions, the microstructure of weld interface, tensile fracture surface and mechanical tests were studied, of friction weld, and so the results were as follows. 1. When the friction time was 1.5seconds under the conditions, the maximum tensile strength of the friction weld happened to be 292MPa, which is $94.2\%$ of the base material's tensile strength(310MPa). At the same condition, the maximum shear strength was 2l2MPa, which is equivalent to $103\%$ of the base material's shear strength (205MPa). 2. At the same condition, the maximum vickers hardness was Hv 146 at A2024- T6 nearby weld interface, which is higher Hv3 than condition of the friction time 0.5seconds, and the maximum vickers hardness was Hvl20 from weld interface of A6061-T6, which is higher Hv28 then base material's. 3. The results of microstructure analysis show that the structures of two base materials have fractionized and rearranged along a column due to heating and axial force during friction, which has affected in raising hardness and tensile strength.

Application of Acoustic Emission Technique and Friction Welding for Excavator Hose Nipple (굴삭기용 호스 니플의 마찰용접과 음향방출기법의 적용)

  • Kong, Yu-Sik;Lee, Jin-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.5
    • /
    • pp.436-442
    • /
    • 2013
  • Friction welding is a very useful joining process to weld metals which have axially symmetric cross section. In this paper, the feasibility of industry application was determined by analyzing the mechanical properties of weld region for a specimen of tube-to-tube shape for excavator hose nipple with friction welding, and optimized welding variables were suggested. In order to accomplish this object, friction heating pressure and friction heating time were selected as the major process variables and the experiment was performed in three levels of each parameter. An acoustic emission(AE) technique was applied to evaluate the optimal friction welding conditions nondestructively. AE parameters of accumulative count and event were analyzed in terms of generating trend of AE signals across the full range of friction weld. The typical waveform and frequency spectrum of AE signals which is generated by friction weld were discussed. From this study the optimal welding variables could be suggested as rotating speed of 1300 rpm, friction heating pressure of 15 MPa, and friction heating time of 10 sec. AE event was a useful parameter to estimate the tensile strength of tube-to tube specimen with friction weld.

Study on Friction Welding of Heat Resisting Steel Materials of SUH3 and SUH35, and Its Real Time Evaluation by AE (내열강재 SUH3과 SUH35의 마찰용접 특성과 AE에 의한 실시간 평가)

  • 양형태;오세규;황성필;김일석
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.12-19
    • /
    • 2000
  • In this paper, not only the development of optimizing of friction welding with more reliability and more applicability but also development of in-process real-time weld quality(such as strength and toughness) evaluation technique by acoustic emission for friction welding of the engine exhaustive valve(SUH3-SUH35 dissimilar steels of 12.3mm, 16mm, 20mm and 24mm in diameters) were performed, comparing with the other FRW matches of materials such as SUH3 to SUH31, SUH3 to STS303 and SUH3 to STS304. As an important result, the techniques for dissimilar friction welding optimization of engine heat resisting steels SUH3 and SUH35( 12.3mm, 16mm, 20mm, 24mm) and its real-time weld quality evaluation by AE were developed, considering on both diameter and carbon equivalent effects.

  • PDF