• Title/Summary/Keyword: Frictional contact

Search Result 310, Processing Time 0.028 seconds

The stick-slip decomposition method for modeling large-deformation Coulomb frictional contact

  • Amaireh, Layla. K.;Haikal, Ghadir
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.583-610
    • /
    • 2018
  • This paper discusses the issues associated with modeling frictional contact between solid bodies undergoing large deformations. The most common model for friction on contact interfaces in solid mechanics is the Coulomb friction model, in which two distinct responses are possible: stick and slip. Handling the transition between these two phases computationally has been a source of algorithmic instability, lack of convergence and non-unique solutions, particularly in the presence of large deformations. Most computational models for frictional contact have used penalty or updated Lagrangian approaches to enforce frictional contact conditions. These two approaches, however, present some computational challenges due to conditioning issues in penalty-type implementations and the iterative nature of the updated Lagrangian formulation, which, particularly in large simulations, may lead to relatively slow convergence. Alternatively, a plasticity-inspired implementation of frictional contact has been shown to handle the stick-slip conditions in a local, algorithmically efficient manner that substantially reduces computational cost and successfully avoids the issues of instability and lack of convergence often reported with other methods (Laursen and Simo 1993). The formulation of this approach, however, has been limited to the small deformations realm, a fact that severely limited its application to contact problems where large deformations are expected. In this paper, we present an algorithmically consistent formulation of this method that preserves its key advantages, while extending its application to the realm of large-deformation contact problems. We show that the method produces results similar to the augmented Lagrangian formulation at a reduced computational cost.

Lab-based Simulation of Carton Clamp Truck Handling - Frictional Characteristics between Corrugated Packages

  • Park, Jong Min;Choi, Sang Il;Kim, Jong Soon;Jung, Hyun Mo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.25 no.3
    • /
    • pp.131-137
    • /
    • 2019
  • Carton clamps, one of forklift attachments, allow users to quickly handle shipping units such as unitized loads, large shipping cases, or crates without the requirement of pallets. As the use of palletless handling by clamp trucks increases, so does the need for simulation research on clamp truck handling. The frictional characteristics for various contact conditions of corrugated paperboards and their constituent boards were analyzed to obtain the data needed in the computer simulation for the handling of carton clamp truck. The overall mean of static-frictional coefficients between selected corrugated paperboards was 0.38 (±0.01), which was 1.3~1.6 times greater than 0.23~0.29 of the frictional coefficients between boards. The overall mean of static-frictional coefficients between the corrugated paperboards and the rubber contact pad was 0.82 (±0.02), which was about 1.1 to 2.8 times greater than 0.29~0.78 of the static-frictional coefficient between the linerboard and the rubber contact pad. The overall mean of kinetic-frictional coefficients between the corrugated paperboards was 0.35 (±0.01), and 0.76 (±0.02) between the corrugated paperboards and the rubber contact pad.

Study of Frictional Behavior of AZ31B Mg Alloy at Elevated Temperature (AZ31B 마그네슘 합금의 온간 마찰 특성 연구)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.27 no.3
    • /
    • pp.160-164
    • /
    • 2018
  • The success of warm forming of Mg alloy sheets is very dependent on its frictional behavior at elevated temperatures. The effects of contact pressure and sliding length on the frictional characteristics of AZ31B Mg alloy sheet were investigated at elevated temperature and at room temperature. The contact pressure range for the friction test was determined through FE analysis of the roof panel which is a candidate for Mg alloy application. According to the experimental results, the frictional behavior of the Mg alloy sheet is equally highly influenced by both sliding length and contact pressure at room temperature. At elevated temperatures, however, the sliding length has a more dominant influence on the frictional characteristics of the Mg alloy sheet than the contact pressure, if the contact pressure is lower than a certain level.

Analyses of Influence of Frictional Heat on the Contact Stress of High-speed Micro-gears

  • Kim, Cheol;Kim, Hyeong-Seok
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.244-248
    • /
    • 2015
  • When a small gear rotates at a very high speed over 40,000 rpm, frictional heat is generated on the gear surfaces. Thermal deformations and stresses arising from frictional heat may lower the efficiency and fatigue life of the high-speed gear. Especially, such frictional heat has much stronger effects on the performance of millimeter-sized high-speed gears used for surgical and dental hand-pieces, due to a small surface area. An analytical equation was derived to calculate frictional temperature on a mating gear surface and conduction heat transfer analysis was performed. Thermal deformation and contact stresses were then calculated using FEM for gears used for medical hand-pieces. The contact stresses of the meshed gear and pinion increase by 19.4% and 16.4%, respectively, when the frictional thermal deformations are considered.

FRICTIONAL FORCES IN THE FIXED ORTHODONTIC APPLIANCE DURING TOOTH MOVEMENT (고정성 교정장치를 이용한 치아이동시 발생되는 마찰력)

  • Cho, Myeong-Sook;Kim, Jong-Chul
    • The korean journal of orthodontics
    • /
    • v.20 no.2
    • /
    • pp.409-417
    • /
    • 1990
  • Tooth movement would be impeded by frictional force arised between archwire and tube, bracket or elastics in the fixed orthodontic appliances, which could be changed variably by such several factors as the contact area, normal (perpendicular) force and the condition of contact surface. There were many literatures about frictional force in the orthodontic region, but different results were obtained from little controlled research so that was very difficult in clinical application. Therefore we have reviewed comprehensively previous literatures about frictional force and thus several results were obtained as follows: 1. For use species of the orthodontic wire, frictional force was influenced mainly by surface roughness of wire in the absence of binding, while that was influenced mainly by normal force in high binding angulation. 2. For the cross-section and diameter of the wire, the contact area influenced mainly on frictional force in the absence of binding, while wire stiffness influenced mainly on frictional force in high binding angulation. 3. The greater the bracket width, the greater frictional force, and frictional force of the plastic bracket was larger than that of the metal bracket. 4. For ligation type, frictional force of the stainless steel ligation was larger than that of the elastic ligation, and frictional force was directly proportional to ligation force. 5. Variable frictional force were occured from the saliva combined with such another factors as normal force and mode of surface oxide et al.

  • PDF

Finite Element Analysis for Frictional Contact Problems of Axisymmetric Deforming Bodies (축대칭 변형체의 마찰 접촉문제에 관한 유한요소 해석)

  • 장동환;조승한;황병복
    • Transactions of Materials Processing
    • /
    • v.12 no.1
    • /
    • pp.26-33
    • /
    • 2003
  • This paper is concerned with the numerical analysis of frictional contact problems in axisymmetric bodies using the rigid-plastic finite element method. A contact finite element method, based on a penalty function, are derived from variational formulations. The contact boundary condition between two deformable bodies is prescribed by the proposed algorithm. The program which can handle frictional contact problem is developed by using pre-existing rigid-plastic finite element code. Some examples used in this paper illustrate the effectiveness of the proposed formulations and algorithms. Efforts focus on the deformation patterns, contact force, and velocity gradient through the various simulations.

Analysis of Static and Dynamic Frictional Contact of Deformable Bodies Including Large Rotations of the Contact Surfaces

  • Lee, Kisu
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.10
    • /
    • pp.1276-1286
    • /
    • 2002
  • The numerical techniques are presented to solve the static and dynamic contact problems of deformable bodies having large rotations of the contact surfaces. The contact conditions on the possible contact surfaces are enforced by using the contact error vector, and an iterative scheme similar to augmented Lagrange multiplier method is employed to reduce the contact error vector monotonically. For dynamic contact problems using implicit time integration, a contact error vector is also defined by combining the displacement, velocity, and acceleration on the contact surface. The suggested iterative technique is implemented to ABAQUS by using the UEL subroutine UEL. In this work, after the computing procedures to solve the frictional contact problems are explained, the numerical examples are presented to compare the present solutions with those obtained by ABAQUS.

Stress Singularity Behaviour in the Frictional Complete Contact Problem of Three Bodies (세 물체 간 마찰 완전 접촉 문제의 응력 특이성 거동)

  • Kim, Hyung-Kyu
    • Tribology and Lubricants
    • /
    • v.35 no.4
    • /
    • pp.229-236
    • /
    • 2019
  • This study investigates the stress singularity that occurs at the contact edge of three bodies in a frictional complete contact. We use the asymptotic analysis method, wherein we constitute an eigenvalue problem and observe the eigenvalue behavior, which we use to obtain the order of the stress singularity. For the present geometry of three bodies in contact, a contact between a cracked indenter and half plane is considered. This is a typical geometry of the PCMI problem of a nuclear fuel rod. Thus, this paper, specifically presents the characteristics of the PCMI problem from the perspective of stress singularity. Consequently, it is noted that the behavior of the stress singularity varies with the difference in the crack angle, coefficient of friction, and material dissimilarity, as is observed in a frictional complete contact of two bodies. In addition, we find that the stress singularity changes essentially linearly with respect to the coefficient of friction, regardless of the variation in the crack angle and material dissimilarity. Concurrently, we find the order of singularity to be 0.5 at a certain coefficient of friction, irrespective of the crack angle, which we also observe in the crack problem of a homogeneous and isotropic body. The order of singularity can also exceed 0.5 in the frictional complete contact problem of three bodies. This implies that the propensity for failure when three bodies are in frictional complete contact can be even worse than that in case of a failure induced by a crack.

Contact Pressure Effect on Frictional Behavior of Sheet Steel for Automotive Stamping (자동차용 강판의 표면 마찰 특성에 대한 접촉 압력의 영향)

  • Han, S.S.
    • Transactions of Materials Processing
    • /
    • v.20 no.2
    • /
    • pp.99-103
    • /
    • 2011
  • Many parameters influence the frictional behavior of steel sheet during stamping. The contact pressure between a die and a sheet during stamping is one of them. Thus, this parameter is investigated for high strength steel (HSS) sheets, which are widely used for auto body panels due to their potential for weight reduction. Since HSS extend the limits of contact pressure for mild steel, the effect of this parameter on friction cannot be ignored. To investigate the influence of contact pressure on the frictional behavior of steel sheets, a flat type of friction test was conducted on three different steel sheets under various contact pressures. For bare steel sheets, the curve representing the relationship between contact pressure and friction coefficient exhibits a U shape. Coated steel sheets show a similar tendency except at low contact pressure. For these materials, when the contact pressure is very low, the friction coefficient slightly increases with pressure before it starts to decrease. The test results show that the effect of contact pressure on frictional behavior of steel sheet is not negligible even for contact pressures that are lower than the strength of HSS sheet.

Analysis of Frictional Contact Problems of Nonlinearly Deformable Bodies by Using Contact Error Vector (접촉 오차 벡터를 이용한 비선형 변형체의 마찰접촉 해석)

  • Lee, Kisu;Kim, Bang-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.3
    • /
    • pp.305-319
    • /
    • 2000
  • Numerical solution lot frictional contact problems of nonlinearly deformable bodies having large deformation is presented. The contact conditions on the possible contact points are expressed by using the contact error vector, and the iterative scheme is used to reduce the contact error vector monotonically toward zero. At each iteration the solution consists of two steps : The first step is to revise the contact force by using the contact error vector given by the previous geometry, and the second step is to compute the displacement and the contact error vector by solving the equilibrium equation with the contact force given at the first step. Convergence of the iterative scheme to the correct solution is analyzed, and the numerical simulations we performed with a rigid-plastic membrane and a nonlinear elastic beam.

  • PDF