• Title/Summary/Keyword: Frozen-thawed blastocyst

Search Result 120, Processing Time 0.027 seconds

A retrospective study of single frozen-thawed blastocyst transfer

  • Hur, Yong Soo;Ryu, Eun Kyung;Song, Seung Hyun;Yoon, San Hyun;Lim, Kyung Sil;Lee, Won Don;Lim, Jin Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.43 no.2
    • /
    • pp.106-111
    • /
    • 2016
  • Objective: To study the clinical outcomes of single frozen-thawed blastocyst transfer cycles according to the hatching status of frozen-thawed blastocysts. Methods: Frozen-thawed blastocysts were divided into three groups according to their hatching status as follows: less-than-expanded blastocyst (${\leq}EdB$), hatching blastocyst (HgB), and hatched blastocyst (HdB). The female age and infertility factors of each group were evaluated. The quality of the single frozen-thawed blastocyst was also graded as grade A, tightly packed inner cell mass (ICM) and many cells organized in the trophectoderm epithelium (TE); grade B, several and loose ICM and TE; and grade C, very few ICM and a few cells in the TE. The clinical pregnancy and implantation rate were compared between each group. The data were analyzed by either t-test or chi-square analysis. Results: There were no statistically significant differences in average female ages, infertility factors, or the distribution of blastocyst grades A, B, and C in each group. There was no significant difference in the clinical pregnancy and implantation rate of each group according to their blastocyst grade. However, there was a significant difference in the clinical pregnancy and implantation rate between each group. In the HdB group, the clinical pregnancy and implantation rate were similar regardless of the blastocyst quality. Conclusion: There was an effect on the clinical outcomes depending on whether the blastocyst hatched during single frozen-thawed blastocyst transfer. When performing single frozen-thawed blastocyst transfer, the hatching status of the frozen-thawed blastocyst may be a more important parameter for clinical outcomes than the quality of the frozen-thawed blastocyst.

Survival Ability of Pig Embryos Frozen-Thawed by Open Pulled Straw Methods

  • Lee, S.Y.;Park, Y.H.;D.S. Chung;Park, C.K.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.108-108
    • /
    • 2003
  • The purpose of this is to investigate the effects of vitrification in open pulled straws (OPS) on in vitro survival of porcine embryos. Blastocysts were produced by in vitro fertilization of slaughterhouse-derived, in vitro matured oocytes with frozen-thawed boar semen, and subsequent culture on granulosa cell monolayer. After frozen-thawing, embryos were culture in NCSU-23 medium with 5 mM hypotaurine, 4 mg/$m\ell$ BSA and 10 ng/$m\ell$ for 48 hrs to survival tests. When blastocysts were frozen-thawed by OPS methods, the embryos with normal morphology were 32.1, 34.5 and 38.9 % in early blastocyst, blastocyst and expanded blastocyat stages. The rates of partial damaged embryos were significantly (P<0.05) higher in early biastocysts than expanded blastocysts. In another experiment, the embryos frozen by OPS methods were cultured for 48 hrs for survival and developmental rates in vitro. The proportions of embryos hatched were 11.8, 20.2 and 33.3% in embryos frozen-thawed at stages of early blastocyst, blastocyst and expanded embryos. On the other hand, The proportions of embryo with normal morphology after culture were 23.5, 25.0 and 33.3% in embryos frozen-thawed at stages of early blastocyst, blastocyst and expanded embryos. These finding indicate the possible broader application for OPS methods that this procedure described is relatively harmless, that it can be used for blastocysts of different developmental stages.

  • PDF

Effects of Mito-TEMPO on the survival of vitrified bovine blastocysts in vitro

  • Jeong, Jae-Hoon;Yang, Seul-Gi;Park, Hyo-Jin;Koo, Deog-Bon
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.299-306
    • /
    • 2021
  • Vitrification methods are commonly used for mammalian reproduction through the long-term storage of blastocyst produced in vitro. However, the survival and quality of embryos following vitrification are significantly low compared with blastocyst from in vitro production (IVP). This study evaluates that the survival of frozen-thawed bovine embryos was relevant to mitochondrial superoxide derived mitochondrial activity. Here we present supplementation of the cryopreservation medium with Mito-TEMPO (0.1 µM) induced a significant (p < 0.001; non-treated group: 56.8 ± 8.7%, reexpanded at 24 h vs Mito-TEMPO treated group: 77.5 ± 8.9%, re-expanded at 24 h) improvement in survival rate of cryopreserved-thawed bovine blastocyst. To confirm the quality of vitrified blastocyst after thawing, DNA fragmentation of survived embryos was examined by TUNEL assay. As a result, TUNEL positive cells rates of frozen-thawed embryos were lower in the Mito-TEMPO treated group (4.2 ± 1.4%) than the non-treated group (7.1 ± 3.5%). In addition, we investigated the intracellular ROS and mitochondrial specific superoxide production using DCF-DA and Mito-SOX staining in survived bovine embryos following vitrification depending on Mito-TEMPO treatment. As expected, intracellular ROS levels and superoxide production of vitrified blastocysts after cryopreservation were significantly reduced (p < 0.05) according to Mito-TEMPO supplement in freezing medium. Also, mitochondrial activity measured by MitoTracker Orange staining increased in the frozen-thawed embryos with Mito-TEMPO compared with non-treated group. These results indicate that the treatment of Mito-TEMPO during cryopreservation might induce reduction in DNA fragmentation and apoptosis-related ROS production, consequently increasing mitochondrial activation for developmental capacity of frozen-thawed embryos.

Effects of Warming Rate and Degenerated Blastomere(s) on Development of Frozen and Thawed Mouse Embryos (냉동.해빙한 생쥐배아의 발생에 미치는 해빙속도와 퇴화할구의 영향)

  • Kim, Moon-Kyoo;Lee, Ho-Joon;Lee, Seung-Jae;Jun, Jong-Young
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.14 no.1
    • /
    • pp.51-59
    • /
    • 1987
  • The present experiments have been bone to verify the effects of the warming rate and the degenerated blastomere(s) on further development of the frozen and thawed 4- and 8-cell mouse embryos. The embryos obtained from the mouse superovulated and mated were frozen in the solution of 15M DMSO in PBS containing 10% FCS at a slowly cooling rate($0.3^{\circ}C/min$). Two methods of warming slowly($8^{\circ}C/min$) and quickly ($450^{\circ}C/min$) were applied for thawing embryos. The thawed embryos were grouped according to the number of healthy blastomere(s) in the embryos. Some of the embryos were eliminated their degenerated blastomere(s) by means of a micromanipulation technique. The embryos were examined their developmental phases after 48 or 72 hrs incubation. The rates of blastocyst development from the frozen and thawed 4- and 8-cell embryos were 72.7% and 73.5%, respectively in case of thawing slowly, and were 78.9% and 80.0%, respectively in case of thawing quickly. The rate in case of thawing quickly was significantly higher than that in case of thawing slowly. The rates of blastocyst development from the frozen and thawed 4- and 8-cell embryos eliminated their degenerated blastomere(s) increased 5.9% and 24.4%, respectively compared with those of control groups not eliminated. The more number of degenerated blastomere(s) were eliminated from the embryos, the higher rate of blastocyst development was shown. It may be concluded from the results that the quickly thawing method is better for increasing survival rate than the slowly thawing one, and that the degenerated blastomere(s) in the frozen and thawed embryos affects as an interfering factor for further development of the embryos.

  • PDF

Survival and In Vitro Development Rate of Frozen Mouse Embryos in Various Cryoprotectants (항동해제에 따른 생쥐 동결수정란의 생존율및 체외발달율)

  • Cha, Sang-Hun;SunWoo, Jae-Gun;Park, Hyo-Suk;Lee, Im-Soon;Cho, Tai-Ho
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.17 no.2
    • /
    • pp.167-172
    • /
    • 1990
  • This study was carried out to clarify the effects of various kinds of cryoprotectants which were frequently used in freezing embryos of domestic animals on the survival of frozen-thawed mouse embryos. Mouse embryos were collected by hyperstimulation induction of ICR mouse. The samples were slowly cooled ($l^{\circ}C/min$) to temperatures between $-7^{\circ}C$ and $-30^{circ}C$ before direct transfer to liquid nitrogen ($-196^{\circ}C$) and thawed rapidly ($-500^{\circ}C$/min). As cryoprotectants, Glycerol, DMSO, Ethylene glycol and Propylene glycol were used and applied each 2 cell, 8 cell, morula in embryo stage. After normal mouse embryos developed to blastocyst by in vitro culture, we observed recovery rate and developing rate of embryos at thawing. The results obtained in these experiments were as follows : 1. The in vitro development rate from the frozen-thawed 2 cell embryos to the blastocyst were 67.7% in ethylene glycol, 65.7% in Propylene glycol, 55.2% in glycerol and 50.0% in DMSO respectively. 2. The in vitro development rate from the frozen-thawed 8 cell embryos to the blastocyst were 83.6% in DMSO, 75.7% in glycerol, 52.2% in propylene glycol respectively. 3. The in vitro development rate from the frozen-thawed morula to the blastocyst were 84.2% in glycerol, 80.0% in DMSO, 66.6% in propylene glycol and 55.2% in ethylene glycol respectively.

  • PDF

Blastocyst transfer in frozen-thawed cycles

  • Han, Ae Ra;Park, Chan Woo;Lee, Hyoung-Song;Yang, Kwang Moon;Song, In Ok;Koong, Mi Kyoung
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.39 no.3
    • /
    • pp.114-117
    • /
    • 2012
  • Objective: It is well known that fresh blastocyst transfer results in better pregnancy outcomes with a smaller number of transferred embryos compared with cleavage stage embryo transfer. However, in terms of frozen-thawed blastocyst transfer, only a few studies are available. We aimed to evaluate clinical outcomes of frozen-thawed embryo transfer (FET) with blastocysts. Methods: Retrospective analysis of FET cycles with blastocysts (B-FET) between Jan 2007 and June 2009 was performed. Age-matched FET cycles with cleavage stage embryos (C-FET) during the same period were collected as controls. A total of 58 B-FET cycles were compared with 172 C-FET cycles and also compared with those of post-thaw extended culture blastocysts from frozen pronuclear stage embryos (22 cycles). Results: There was no difference in the patient characteristics of each group. The embryos' survival rates after thawing were comparable (>90%) and there was no difference in the implantation rate or clinical and ongoing pregnancy rate among the three groups. Conclusion: In FET, blastocyst transfers may not present better pregnancy outcomes than cleavage stage embryo transfers. A further large-scale prospective study is needed.

Sex Determination of Biopsied Hanwoo Embryos by Polymerase Chain Reaction and Embryo Transfer with Sexed Blastocysts (한우 체외수정란 Biopsy 후 PCR 기법을 이용한 성 판정과 성감별 수정란의 이식)

  • 김용준;정구남;이해이;조성우;김용수;유일정
    • Journal of Embryo Transfer
    • /
    • v.15 no.3
    • /
    • pp.219-230
    • /
    • 2000
  • This study was carried out to determine the factors on achieving good viability of embryos biopsied fur sexing, to investigate pregnancy rate following embryo transfer(ET) with sexed embryos, and to confirm the accuracy for the calves bort following ET with sexed embryos by polymerase chain reaction(PCR). To investigate viability of Hanwoo embryos after biopsy for sexing, fresh and frozen/thawed embryos were biopsied according to different developmental day of blastocysts, different stage of blastocysts, and different biopsy grade and the embryos themselves were incubated for 2 hours in TCM199 after microsection to be evaluated morphologically for recovery as blastocyst. The results obtained were as follows : 1. The rate of oocytes cleaved in vitro and the rate of blastocyst of the cleaved oocytes were 52.5% and 21.6%, respectively. The rate of blastocyst on day 8 was 11.2%, denoting the highest rate during whole culture period posterior to in vitro fertilization(IVF) 2. After biopsy for sexing, the viability rate of blastocyst on day 7, 8 and 9 was 75.0%, 88.4%, and 100.0%, respectively and the viability of early, mid, and expanded blastocyst after biopsy was 75.0%, 88.9%, and 91.1%, respectively The viability rate of fresh and frozen/thawed embryos was 89.9%, 71.4%, respectively. And the viability of expanded, hatching, and hatched blastocyst of frozen/thawed embryos was : 75.0%, 75.0%, and 50.0%, respectively. The viability of embryos according to biopsy grade of 10∼20%, 21∼30%, and 31∼40% was 85.7%, 91.5%, and 71.4%, respectively. 3. Pregnancy rate after transfer with biopsied embryo between flesh and frozen/thawed embryos was 22.6% and 20.0%, respectively. 4. In comparison between sex by PCR method and sex of calves born after embryo transfer, the accuracy of sex deterimination was 92.3% (12/13).

  • PDF

Effect of Trophoblastic Vesicles Co-Transfer on Pregnancy Rate Following Embryo Transfer in Cattle (소에 있어서 영양아세포구의 공동 이식이 수정란이식 수태율에 미치는 영향)

  • 양보석;오성종;임기순;박성재;양병철;김경남
    • Journal of Embryo Transfer
    • /
    • v.16 no.1
    • /
    • pp.29-34
    • /
    • 2001
  • To investigate the effect of co-transfer of trophoblastic vesicle (TV) with frozen-thawed in vitro Produced (IVP) bovine embryo on pregnancy rate, IVP blastocysts were transferred to synchronized recipients. Elongated blastocysts were recovered at Day 13 to 15, and dissected more than 4 pieces to removed the embryonic disc. Throphoblastic fragments were cultured for 48 hours to make throphoblastic vesicles (TVs). TVs were cryopreserved in ethylene glycol or vitrification solution and frozen-thawed TVs were co-transferred to recipients with frozen-thawed IVP embryos. 1 The recovery rate of elongated blastocyst on Day 13 to 15 was 22.5% (18/80) and the size of recovered elongated blastocysts was 0.2∼5.0mm. 2. Eighteen elongated blastocysts were dissected into 88 pieces and 61.4% of those pieces were formed to TV (54/88) 3. The viability of frozen-thawed TV in ethylene glycol was higher than in vitrified solution (92.8% vs. 68.8%) 4. The pregnancy rate in co-transfer with frozen-thawed TV and IVP blastocyst was better than transfer only IVP blastocysts (50.0% vs. 23.1%).

  • PDF

Studies on Embryo Transfer in Rabbit ―II. The viability of deep-frozen embryos at different developing stages― (가토의 수정란이식에 관한 연구 ―II. 동결융해난자의 발육단계별 생존성-)

  • 김정익;양부근;남상헌;고광두
    • Korean Journal of Animal Reproduction
    • /
    • v.7 no.1
    • /
    • pp.19-23
    • /
    • 1983
  • Present studies were conducted to investigate the developmental stage and the location of embryos in the reproductive tract at various times after ovulation, the morphologically normal after thawing of embryos preserved in liquid nitrogen, and the survival after transferring frozen-thawed embryos. The results obtained were as follows: 1. Embryo stage and location in the reproductive tract after hCG administration. For the investigation of embryo stage and location in the reproductive tract after ovulation, rabbits were laparotomized at 24, 40, 48, 72 and 120 hrs post hCG injection, simultaneously with mating. the oviducts and uteri were flushed out with PBS medium containing 50% rabbit serum, respectively. 1) Most of embryos was remained in the oviduct within 48 hrs, with the lapse of time, embryos were started to move to uterus and shifted in uterus at 72 hrs after hCG injection. 2) The representatives of embryos stage collected at 24, 40, 48, 72 and 120 hrs were 1-cell(60.4%), 8-cell to early morula (52.3, 39.3%), late blastocyst (95.5%) stages, respectively. 2. Morphological normality and survival of the frozen-thawed embryos. For the evalution of the quality and viability on the frozen-thawed embryos, immediately after thawing, embryos were assessed by morphologically normal under a dissecting microscope, and a further test of frozen-thawed embryos was made by transferring the morphologically normal embryos to the uteri of recipient rabbit induced pseudopregnancy by the injection of hCG at the time of hCG injection in donor rabbits. 1) The propotions of embryos which a, pp.ared morphologically normal was higher when 8-cell (85.7%) and morula(90.5%) were used for freezing than when 4-cell (66.7%) and blastocyst (75.8%) were used. 2) Preganacies were observed at Day 15 after transfer of frozen-thawed 8-cell (7/13), morula (19/42) and blastocyst (3/19) but not after transfer of embryos at 4-cell stage.

  • PDF

Effect of Cryopreservation Day on Pregnancy Outcomes in Frozen-thawed Blastocyst Transfer (동결 해동한 포배 이식에 있어서 동결시기가 임신결과에 미치는 영향)

  • Kim, Hyun-Jung;Kim, Chung-Hyon;Lee, Joong-Yeup;Kwon, Jae-Hee;Hwang, Do-Yeong;Kim, Ki-Chul
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.37 no.1
    • /
    • pp.57-64
    • /
    • 2010
  • Objectives: Likewise fresh cycle, it is also important to select right blastocysts for transfer in purpose of improving the pregnancy and implantation rates in frozen-thawed embryo transfer (ET) cycles. To investigate the relationship between the developmental velocity at the time of cryopreservation and pregnancy rates, we compared pregnancy rates between the day 5 cryopreservation group and the day 6 cryopreservation group. Methods: Transfers of frozen-thawed blastocysts which had been cryopreserved by vitrification on day 5 or day 6 were performed between January 2006 and June 2007. Ethylene glycol, DMSO, and pull and cut straws were used for vitrification and artificial shrinkage was done in expanded blastocysts. Thawing was performed on the day before transfer and thawed blastocysts were cultured in for 15~18 hrs in Quinn's blastocyct media. Blastocyst survival was assessed before transfer and post-thaw survival was defined as >50% of cells remaining intact and blastocoele re-expansion by the time of transfer. Results: Transfers of thawed blastocyst had been cryopreserved on day 5 were 52 cycles and 41 transfer cycles were cryopreserved on day 6. Patient characteristics, the number of transferred embryos and the survival rate of thawed blastocysts were not different in each cryopreservation day. But the biochemical pregnancy, clinical pregnancy, ongoing pregnancy, and implantation rate were significantly high in transfer of frozen-thawed blastocyst which were cryopreserved on day 5. Conclusions: The clinical pregnancy and implantation rate of day-5 blastocyst showed significantly higher than those of day-6 blastocyst in frozen-ET cycles. This result indicated that developmental rate of blastocyst at cryopreservation time in frozen-thawed cycle is discriminative marker of pregnancy outcome as like in fresh cycle.