• Title/Summary/Keyword: Fructan

Search Result 64, Processing Time 0.034 seconds

Change in Fructan Content and Antioxidant Activity of Garlic Treated Acid and Heat (산과 열처리에 따른 마늘 Fructan과 항산화활성 변화)

  • Hwang, In-Guk;Kim, Ki-Chan;Choi, Sung-Gil;Lee, Jun-Soo;Jeong, Heon-Sang
    • Journal of agriculture & life science
    • /
    • v.44 no.1
    • /
    • pp.61-67
    • /
    • 2010
  • This study was to investigate the fructose, total fructan, polyphenol contents, and antioxidant activity of garlic treated acid and heat($100{\sim}140^{\circ}C$ for 2 hr). Optimum condition of acid hydrolysis of fructan was 0.3N $H_2SO_4$ and 5 min. As increasing heating temperature, fructose content was significantly increased from 17.1 to 189.9 mg/g whereas total fructan content was decreased from 248.1 to 2.0 mg/g. The fructan was mostly hydrolyzed by heating at $130^{\circ}C$ for 2 hr. The polyphenol contents was increased from 0.85 to 13.74 mg/g increasing heating temperature and also antioxidant activity was significantly increased. The polyphenol contents and antioxidant activity on acid hydrolysate after heating was slightly increased.

Cosmeceutical Properties of Fructan (Levan) Produced by Zymomonas mobilis

  • Kim, K. H.;C. S. Han;K. I. Ko;E. K. Yang;Kim, C. H.;Park, S. N.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.700-718
    • /
    • 2003
  • Fructan, a polysaccharide existing in plants or produced by microorganisms, is a sugar polymer of fructose with $\beta$-2,6 linkages. In this study, we investigated some cosmeceutical properties of Fructan such as moisturizing effect, cell proliferation effect, anti-inflammation effect and cell cytotoxicity. Zymomonas mobilis, a microorganism producing Fructan, was cultured in a medium containing 10% sucrose and 2% yeast extract as main components for 24 hours at 37$^{\circ}C$ and pH 7. Fructan was obtained by precipitation from the cultured medium by adding alcohol (alcohol ratio of 1:3) after removing the enzyme by centrifuging. Fructan exhibited almost same moisturizing effect as hyaluronic acid and cell proliferation effect on human fibroblast and keratinocyte as well. Moreover, on cell proliferation test on bio-artificial skin constructed by 3-dimensional(3-D) culture after inducing primary skin inflammation with 0.5% sodium lauryl sulfate (SLS), the 3-D artificial skin treated with 0.01 mg/ml, 0.05mg/ml of Fructan exhibited higher cell proliferation than the 3-D artificial skin treated with SLS only. On anti-inflammation test on 3-D artificial skin evaluated by measuring secreted quantity of interleukin-1$\alpha$ (IL-1$\alpha$) which is a pre-inflammatory mediator induced by SLS, the quantity of IL-1$\alpha$on the 3-D artificial skin treated with 0.01 mg/ml, 0.05mg/ml of Fructan was less than the one on the 3-D artificial skin treated with SLS only. As a result of these studies, Fructan has anti-inflammation effect against inflammatory reaction by a skin irritant as well as cell proliferation effect in bio-artificial skin. Fructan was also evaluated as a safe material without any toxicity in safety tests using fibroblasts and animals.

  • PDF

Zymomonas mobilis에 의해 생성된 Fructan (Levan)의 특성 및 화장품 원료로의 개발

  • 이재섭;양은경;이정하;김철호;박수남;이종원;김기호
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.28 no.1
    • /
    • pp.186-201
    • /
    • 2002
  • Fructan(Levan)은 식물체 및 미생물에서 발견되는 탄수화물로 이는 과당(fructose)이 $\beta$-2, 6 결합으로 연결되어 있는 polysaccaride 이다. 본 연구에서는 Fructan을 생성하는 미생물(Zymomonas mobilis)과 10% sucrose(기질), 1-2% 효모 추출물을 주성분으로 하는 배지를 사용하여 30-37$^{\circ}C$, pH 5.0-7.0에서 20-24시간 동안 배양한후 원심분리하여 균체를 제거하고 3배량의 알코올을 가하여 침전, 건조하여 얻은 Fructan의 화장품 원료로서의 가능성을 조사하였다. 보습효과에 있어서는 Hyaluronic acid와 유사하였으며, keratinocyte에 대한 세포증식 효과를 나타내었다. 또한 3-D culture에 의해 구축된 생인공 피부내에 0.05%의 sodium lauryl sulfate (SLS)를 사용하여 피부자극에 의한 초기 염증 반응을 유도한후 0.01mg/m1, 0.05mg/m1의 Fructan을 각각 처리하였을 때, SLS만을 처리한 생인공피부와 비교하여 세포증식효능을 보였고, SLS 자극물질로 유도된 전염증성 조절인자인 interleukin-l$\alpha$(IL-l$\alpha$)의 분비량을 조사 하였을때 0.01mg/ml, 0.05mg/ml의 Fructan을 처리한 생인공피부의 IL-l$\alpha$ 양이 Fructan을 처리하지 않은 것보다 상대적으로 감소하였다. 이러한 결과로 Fructan이 생인공 피부내 피부 세포의 증식효과를 나타낼 뿐만 아니라, 또한 피부자극물질에 의한 염증반응에 대해 자극완화효능이 있음을 알 수 있었다. 섬유아세포 및 동물을 이용한 안전성 시험에서도 독성이 없는 안전한 원료로 평가되었다.

Purification and Properties of Wheat Fructan Exohydrolase (밀 Frucdtan Exohydrolase의 분리 및 특성)

  • Byeong Ryong, Jeong;Thomas L, Housley
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.4
    • /
    • pp.456-464
    • /
    • 1996
  • Fructans are the major vegetative storage carbohydrate in wheat(Triticum aestivum L.). The depolymerization of fructans occurs by the sequential removal of terminal fructosyl residues by a specific fructan exohydrolase(FEH). The objective of this study was to isolate and characterize this enzyme in wheat. From stems and sheaths of field-grown wheat(cv. Clark), FEH was purified 356-fold using salt precipitation and a series of chromatographic procedures including size exclusion, anion exchange, and affinity chromatography. FEH had a molecular weight of 63.7 kD and an optima at pH 5.5 and 3$0^{\circ}C$. The $K_{m}$s for $\beta$(2 longrightarrow1) linked oligofructans varied, from 10 to 37mM, with the lowest $K_{m}$ for tetrasaccharide. The $V_{max}$ increased as degree of polymerization (DP) increased. Wheat FEH hydrolyzed only, $\beta$(2 longrightarrow1) linked fructans but not, $\beta$(2 longrightarrow6) linked timothy fructan or sucrose. The role of this FEH in fructan metabolism in wheat is discussed.sed.

  • PDF

Fructan Biosynthesis by Yeast Cell Factories

  • Hyunjun Ko;Bong Hyun Sung;Mi-Jin Kim;Jung-Hoon Sohn;Jung-Hoon Bae
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.11
    • /
    • pp.1373-1381
    • /
    • 2022
  • Fructan is a polysaccharide composed of fructose and can be classified into several types, such as inulin, levan, and fructo-oligosaccharides, based on their linkage patterns and degree of polymerization. Owing to its structural and functional diversity, fructan has been used in various fields including prebiotics, foods and beverages, cosmetics, and pharmaceutical applications. With increasing interest in fructans, efficient and straightforward production methods have been explored. Since the 1990s, yeast cells have been employed as producers of recombinant enzymes for enzymatic conversion of fructans including fructosyltransferases derived from various microbes and plants. More recently, yeast cell factories are highlighted as efficient workhorses for fructan production by direct fermentation. In this review, recent advances and strategies for fructan biosynthesis by yeast cell factories are discussed.

Studies in Quantitative Analysis of Inulin-type and Levan-type Fructan in some Korean Foods (국산 식품에서 이눌린타입과 레반타입 플럭탄 정량분석 연구)

  • Jang, Eun Ho;Nam, Dong Hoon;Lee, Jae-Cheol;Jang, Ki-Hyo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.5
    • /
    • pp.519-526
    • /
    • 2018
  • Fructan, a fructose homopolymer, is found in various foods, including onion, garlic, chicory, Jerusalem artichoke, banana, and Cheonggukjang. This study aimed to quantitatively analyze both levan-type and insulin-type fructan using acid analysis and enzyme treatment. In order to analyze fructan contents, we applied optimized conditions to various fructan-rich foods using products from 2017. In the case of oxalic acid hydrolysis, fructose concentrations increased as oxalic acid concentration increased. Inulinase treatment was better than invertase treatment in terms of fructose liberation from fructan. We applied three different methods to fructan-rich foods, including onion, garlic, banana, and Cheonggukjang and found that fructose released from fructan-rich foods was the highest in oxalic acid hydrolysis among three different methods. Except for Cheonggukjang, inulinase treatment produced better results in terms of fructose contents than invertase treatment. From our study, estimated daily fructan intakes by Koreans were 1,172~3,402 mg from onion and garlic. In conclusion, we believe that information on fructan-rich foods may be helpful to understand their roles in the human digestive system.

Increment of fructan biosynthesis in rice by transformation of 1-sst and 1-fft genes isolated from jerusalem artichoke (Helianthus tuberosus L.) (돼지감자 유래 1-sst와 1-fft 유전자의 형질전환 발현에 의한 벼의 fructan 생합성 증진)

  • Kang, Kwon-Kyoo;Song, Beom-Heon;Lee, Gyong-A;Lee, Hye-Jung;Park, Jin-Ha;Jung, Yu-Jin;Cho, Yong-Gu
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.102-109
    • /
    • 2010
  • Fructan has been found to accumulate in various tissues during periods when light levels increased carbon fixation where low temperatures reduced growth rates while photosynthesis continued. In this study, we have cloned 1-sucrose:sucrose fructosyl transferase(1-sst) and 1-fructan: fructan fructosyl transferase (1-fft, a key enzyme for the synthesis of fuctan) from Jerusalem Artichoke (Helianthus tuberosus L.). The recombinant vector with 1-sst and 1-fft has been constructed under the control of 35S promoter of KJGV-B2 vector and transgenic plants obtained by Agrobacterium tumefaciens LBA4404. PCR analysis carried out on the putative transgenic plants for amplification of the coding region of specific gene (1-sst, 1-fft), and HPT genes. Transgenic lines carrying of 1-sst and 1-fft were confirmed for integration into the rice genome using Southern blot hybridization and RT-PCR. The transgenic plants in $T_2$ generation were selected and expression pattern analysis revealed that 1-sst and 1-fft were stable. This analysis confirmed the presence of low-molecular-weight fructan in the seedling of the transgenic rices. Therefore, cold tolerance and carbohydrate metabolism will be possible to develop resistant plants using the transgenic rice.

The Effect of Chicory Fructan Fiber on Calcium Absorption and Bone Metabolism in Korean Postmenopausal Women

  • Kim, Yun-Young;Jang, Ki-Hyo;Lee, Eun-Young;Yunhi Cho;Kang, Soon-Ah;Ha, Woel-Kyu;Ryowon Choue
    • Nutritional Sciences
    • /
    • v.7 no.3
    • /
    • pp.151-157
    • /
    • 2004
  • The aim of this study was to investigate the effects of chicory fructan fiber supplementation on bone mineral density, apparent absorption of minerals and serum parameters related to bone turnover in postmenopausal women. Twenty-six healthy Korean postmenopausal women participated in the study. 1be participants were randomly divided into two groups in a double-blind parallel design and took one of the supplements for 3 months; either a placebo of 8g maltodextrins/sucrose mixture (control group) or 8g chicory fructan fiber (fructan group). During the 3-month experimental period no differences were found in bone mineral density (BMD) between the two groups. Apparent calcium absorption significantly increased by 42% in the fructan group, while that of the control group decreased by 29% as compared to the values at baseline. Urinary calcium excretion was not significantly different between the group;;. After 3 months, the level of serum alkaline phosphatase (ALP) was significantly lower in the fructan group than in the control group and deoxypyridinolin showed a trend toward a slight reduction. In conclusion, intake of chicory fructan fiber with a regular increases apparent calcium absorption in postmenopausal women.

Effects of L-tryptophan, Fructan, and Casein on Reducing Ammonia, Hydrogen Sulfide, and Skatole in Fermented Swine Manure

  • Sheng, Q.K.;Yang, Z.J.;Zhao, H.B.;Wang, X.L.;Guo, J.F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.8
    • /
    • pp.1202-1208
    • /
    • 2015
  • The effects of daily dietary Bacillus subtilis (Bs), and adding L-tryptophan, fructan, or casein to fecal fermentation broths were investigated as means to reduce the production of noxious gas during manure fermentation caused by ammonia, hydrogen sulfide ($H_2S$), and 3-methylindole (skatole). Eighty swine ($50.0{\pm}0.5kg$) were equally apportioned to an experimental group given Bs in daily feed, or a control group without Bs. After 6 weeks, fresh manure was collected from both groups for fermentation studies using a $3{\times}3$ orthogonal array, in which tryptophan, casein, and fructan were added at various concentrations. After fermentation, the ammonia, $H_2S$, L-tryptophan, skatole, and microflora were measured. In both groups, L-tryptophan was the principle additive increasing skatole production, with significant correlation (r = 0.9992). L-tryptophan had no effect on the production of ammonia, $H_2S$, or skatole in animals fed Bs. In both groups, fructan was the principle additive that reduced $H_2S$ production (r = 0.9981). Fructan and Bs significantly interacted in $H_2S$ production (p = 0.014). Casein was the principle additive affecting the concentration of ammonia, only in the control group. Casein and Bs significantly interacted in ammonia production (p = 0.039). The predominant bacteria were Bacillus spp. CWBI B1434 (26%) in the control group, and Streptococcus alactolyticus AF201899 (36%) in the experimental group. In summary, daily dietary Bs reduced ammonia production during fecal fermentation. Lessening L-tryptophan and increasing fructan in the fermentation broth reduced skatole and $H_2S$.